Skip to content

This repository contains code for implementing Double Successive Over-Relaxation Q-Learning across various reinforcement learning domains.

Notifications You must be signed in to change notification settings

shreyassr123/Double-SOR-Q-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 

Repository files navigation

Double Successive Over-Relaxation Q-Learning with an Extension to Deep Reinforcement Learning

This repository contains the code for the numerical simulations conducted in the paper titled "Double Successive Over-Relaxation Q-Learning with an Extension to Deep Reinforcement Learning," available on arXiv. The project is organized into two main folders: one for the tabular version of Double SOR Q-Learning and one for the Deep RL version.

Project Structure

Tabular Version

The Tabular_Version folder contains Python code to run environments and experiments for:

  • Roulette
  • Grid World

This folder also includes the necessary files for plotting results and analyzing performance.

Deep RL Version

The Deep_RL_Version folder includes code for running:

  • CartPole Environment
  • Lunar Lander Environment
  • Maximization Example

These implementations leverage deep reinforcement learning techniques to explore the effectiveness of Double SOR Q-Learning in more complex scenarios.

Acknowledgements

Tabular Version

The numerical implementation of the tabular Double SOR Q-Learning version, including the roulette and grid world environments, is based on the examples presented in the paper:

  • Double Q-Learning by Hado van Hasselt (2010), NeurIPS.

We acknowledge the contributions of Hado van Hasselt and the NeurIPS conference for providing foundational methods that have influenced this work. The code and methodology are inspired by and extend the ideas described in this seminal paper.

Deep RL Version

The code for the following environments is sourced from the specified GitHub pages:

We appreciate the authors and maintainers of these repositories for their contributions, which have been instrumental in the development of this work. The provided code and methods have been adapted and extended to fit the context of this project.

About

This repository contains code for implementing Double Successive Over-Relaxation Q-Learning across various reinforcement learning domains.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages