Skip to content

Tensorflow implementation of a CycleGAN with a 1D Convolutional Neural Network and Gated units with options for the residual connections, dilations and a PostNet.

License

Notifications You must be signed in to change notification settings

shreyas253/CycleGAN_1dCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CycleGAN with 1D CNN model

INTRODUCTION

Tensorflow (Python) implementation of a Cycle Consistant Adverserial Network(CycleGAN) with a Convolutional Neural Network (CNN) model with Gated activations, Residual connections, dilations and PostNets.

Comments/questions are welcome! Please contact: [email protected]

Last updated: 30.10.2018

LICENSE

Copyright (C) 2018 Shreyas Seshadri, Aalto University

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The source code must be referenced when used in a published work.

FILES AND FUNCTIONS

train_cycleW.py - CycleGAN implementation using WGAN loss with gradient penalty [2]

model_convNet.py - 1D CNN implementation with gated units, residual connections, potNets and dilations

REFERENCES

[1] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” Proc. ICCV 2017, pp. 2223–2232, 2017.

[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of Wasserstein GANs,” in Advances in Neural In- formation Processing Systems 30, , 2017, pp. 5767–5777.

About

Tensorflow implementation of a CycleGAN with a 1D Convolutional Neural Network and Gated units with options for the residual connections, dilations and a PostNet.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages