-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathAttitudeAlgorithm.c
352 lines (289 loc) · 10.8 KB
/
AttitudeAlgorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
____ _____ +---+
/ ___\ / __ \ | R |
/ / / /_/ / +---+
/ / ________ ____ ___ / ____/___ ____ __ __
/ / / ___/ __ `/_ / / _ \/ / / __ \/ _ \/ / / /
/ /__/ / / /_/ / / /_/ __/ / / /_/ / / / / /__/ /
\___/_/ \__,_/ /___/\___/_/ \___ /_/ /_/____ /
/ /
____/ /
/_____/
Filename: IMUSO3.c
Author: 祥 、nieyong
说明:这是Crazepony软件姿态解算融合文件,Crazepony已经不再使用DMP硬件解算
Part of this algrithom is referred from pixhawk.
------------------------------------
*/
#include "stm32f10x.h"
#include "stm32f10x_it.h"
#include <math.h>
#include "IMU.h"
#include "IMUSO3.h"
//! Auxiliary variables to reduce number of repeated operations
static float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; /** quaternion of sensor frame relative to auxiliary frame */
static float dq0 = 0.0f, dq1 = 0.0f, dq2 = 0.0f, dq3 = 0.0f; /** quaternion of sensor frame relative to auxiliary frame */
static float gyro_bias[3] = {0.0f, 0.0f, 0.0f}; /** bias estimation */
static float q0q0, q0q1, q0q2, q0q3;
static float q1q1, q1q2, q1q3;
static float q2q2, q2q3;
static float q3q3;
static uint8_t bFilterInit = 0;
//函数名:invSqrt(void)
//描述:求平方根的倒数
//该函数是经典的Carmack求平方根算法,效率极高,使用魔数0x5f375a86
static float invSqrt(float number)
{
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * (( long * ) &y);
i = 0x5f375a86 - ( i >> 1 );
y = * (( float * ) &i);
y = y * ( f - ( x * y * y ) );
return y;
}
//! Using accelerometer, sense the gravity vector.
//! Using magnetometer, sense yaw.
static void NonlinearSO3AHRSinit(float ax, float ay, float az, float mx, float my, float mz)
{
float initialRoll, initialPitch;
float cosRoll, sinRoll, cosPitch, sinPitch;
float magX, magY;
float initialHdg, cosHeading, sinHeading;
initialRoll = atan2(-ay, -az);
initialPitch = atan2(ax, -az);
cosRoll = cosf(initialRoll);
sinRoll = sinf(initialRoll);
cosPitch = cosf(initialPitch);
sinPitch = sinf(initialPitch);
magX = mx * cosPitch + my * sinRoll * sinPitch + mz * cosRoll * sinPitch;
magY = my * cosRoll - mz * sinRoll;
initialHdg = atan2f(-magY, magX);
cosRoll = cosf(initialRoll * 0.5f);
sinRoll = sinf(initialRoll * 0.5f);
cosPitch = cosf(initialPitch * 0.5f);
sinPitch = sinf(initialPitch * 0.5f);
cosHeading = cosf(initialHdg * 0.5f);
sinHeading = sinf(initialHdg * 0.5f);
q0 = cosRoll * cosPitch * cosHeading + sinRoll * sinPitch * sinHeading;
q1 = sinRoll * cosPitch * cosHeading - cosRoll * sinPitch * sinHeading;
q2 = cosRoll * sinPitch * cosHeading + sinRoll * cosPitch * sinHeading;
q3 = cosRoll * cosPitch * sinHeading - sinRoll * sinPitch * cosHeading;
// auxillary variables to reduce number of repeated operations, for 1st pass
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
}
//函数名:NonlinearSO3AHRSupdate()
//描述:姿态解算融合,是Crazepony和核心算法
//使用的是Mahony互补滤波算法,没有使用Kalman滤波算法
//改算法是直接参考pixhawk飞控的算法,可以在Github上看到出处
//https://github.com/hsteinhaus/PX4Firmware/blob/master/src/modules/attitude_estimator_so3/attitude_estimator_so3_main.cpp
static void NonlinearSO3AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz, float twoKp, float twoKi, float dt)
{
float recipNorm;
float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f;
// Make filter converge to initial solution faster
// This function assumes you are in static position.
// WARNING : in case air reboot, this can cause problem. But this is very unlikely happen.
if(bFilterInit == 0) {
NonlinearSO3AHRSinit(ax,ay,az,mx,my,mz);
bFilterInit = 1;
}
//! If magnetometer measurement is available, use it.
if(!((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f))) {
float hx, hy, hz, bx, bz;
float halfwx, halfwy, halfwz;
// Normalise magnetometer measurement
// Will sqrt work better? PX4 system is powerful enough?
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Reference direction of Earth's magnetic field
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
hz = 2.0f * mx * (q1q3 - q0q2) + 2.0f * my * (q2q3 + q0q1) + 2.0f * mz * (0.5f - q1q1 - q2q2);
bx = sqrt(hx * hx + hy * hy);
bz = hz;
// Estimated direction of magnetic field
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += (my * halfwz - mz * halfwy);
halfey += (mz * halfwx - mx * halfwz);
halfez += (mx * halfwy - my * halfwx);
}
// 增加一个条件: 加速度的模量与G相差不远时。 0.75*G < normAcc < 1.25*G
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f)))
{
float halfvx, halfvy, halfvz;
// Normalise accelerometer measurement
//归一化,得到单位加速度
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity and magnetic field
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += ay * halfvz - az * halfvy;
halfey += az * halfvx - ax * halfvz;
halfez += ax * halfvy - ay * halfvx;
}
// Apply feedback only when valid data has been gathered from the accelerometer or magnetometer
if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) {
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
gyro_bias[0] += twoKi * halfex * dt; // integral error scaled by Ki
gyro_bias[1] += twoKi * halfey * dt;
gyro_bias[2] += twoKi * halfez * dt;
// apply integral feedback
gx += gyro_bias[0];
gy += gyro_bias[1];
gz += gyro_bias[2];
}
else {
gyro_bias[0] = 0.0f; // prevent integral windup
gyro_bias[1] = 0.0f;
gyro_bias[2] = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Time derivative of quaternion. q_dot = 0.5*q\otimes omega.
//! q_k = q_{k-1} + dt*\dot{q}
//! \dot{q} = 0.5*q \otimes P(\omega)
dq0 = 0.5f*(-q1 * gx - q2 * gy - q3 * gz);
dq1 = 0.5f*(q0 * gx + q2 * gz - q3 * gy);
dq2 = 0.5f*(q0 * gy - q1 * gz + q3 * gx);
dq3 = 0.5f*(q0 * gz + q1 * gy - q2 * gx);
q0 += dt*dq0;
q1 += dt*dq1;
q2 += dt*dq2;
q3 += dt*dq3;
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
}
#define so3_comp_params_Kp 1.0f
#define so3_comp_params_Ki 0.05f
//函数名:IMUSO3Thread(void)
//描述:姿态软件解算融合函数
//该函数对姿态的融合是软件解算,Crazepony现在不使用DMP硬件解算
//对应的硬件解算函数为IMU_Process()
void IMUSO3Thread(void)
{
//! Time constant
float dt = 0.01f; // s
static uint32_t tPrev=0,startTime=0; //us
uint32_t now;
uint8_t i;
/* output euler angles */
float euler[3] = {0.0f, 0.0f, 0.0f}; // rad
/* Initialization */
float Rot_matrix[9] = {1.f, 0.0f, 0.0f, 0.0f, 1.f, 0.0f, 0.0f, 0.0f, 1.f }; /**< init: identity matrix */
float acc[3] = {0.0f, 0.0f, 0.0f}; // m/s^2
float gyro[3] = {0.0f, 0.0f, 0.0f}; // rad/s
float mag[3] = {0.0f, 0.0f, 0.0f};
//need to calc gyro offset before imu start working
static float gyro_offsets_sum[3]={ 0.0f, 0.0f, 0.0f };// gyro_offsets[3] = { 0.0f, 0.0f, 0.0f },
static uint16_t offset_count = 0;
now=micros();
dt=(tPrev>0)?(now-tPrev)/1000000.0f:0;
tPrev=now;
ReadIMUSensorHandle();
if(!imu.ready)
{
if(startTime==0)
startTime=now;
gyro_offsets_sum[0] += imu.gyroRaw[0];
gyro_offsets_sum[1] += imu.gyroRaw[1];
gyro_offsets_sum[2] += imu.gyroRaw[2];
offset_count++;
if(now > startTime + GYRO_CALC_TIME)
{
imu.gyroOffset[0] = gyro_offsets_sum[0]/offset_count;
imu.gyroOffset[1] = gyro_offsets_sum[1]/offset_count;
imu.gyroOffset[2] = gyro_offsets_sum[2]/offset_count;
offset_count=0;
gyro_offsets_sum[0]=0;gyro_offsets_sum[1]=0;gyro_offsets_sum[2]=0;
imu.ready = 1;
startTime=0;
}
return;
}
gyro[0] = imu.gyro[0] - imu.gyroOffset[0];
gyro[1] = imu.gyro[1] - imu.gyroOffset[1];
gyro[2] = imu.gyro[2] - imu.gyroOffset[2];
acc[0] = -imu.accb[0];
acc[1] = -imu.accb[1];
acc[2] = -imu.accb[2];
// NOTE : Accelerometer is reversed.
// Because proper mount of PX4 will give you a reversed accelerometer readings.
NonlinearSO3AHRSupdate(gyro[0], gyro[1], gyro[2],
-acc[0], -acc[1], -acc[2],
mag[0], mag[1], mag[2],
so3_comp_params_Kp,
so3_comp_params_Ki,
dt);
// Convert q->R, This R converts inertial frame to body frame.
Rot_matrix[0] = q0q0 + q1q1 - q2q2 - q3q3;// 11
Rot_matrix[1] = 2.f * (q1*q2 + q0*q3); // 12
Rot_matrix[2] = 2.f * (q1*q3 - q0*q2); // 13
Rot_matrix[3] = 2.f * (q1*q2 - q0*q3); // 21
Rot_matrix[4] = q0q0 - q1q1 + q2q2 - q3q3;// 22
Rot_matrix[5] = 2.f * (q2*q3 + q0*q1); // 23
Rot_matrix[6] = 2.f * (q1*q3 + q0*q2); // 31
Rot_matrix[7] = 2.f * (q2*q3 - q0*q1); // 32
Rot_matrix[8] = q0q0 - q1q1 - q2q2 + q3q3;// 33
//1-2-3 Representation.
//Equation (290)
//Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors, James Diebel.
// Existing PX4 EKF code was generated by MATLAB which uses coloum major order matrix.
euler[0] = atan2f(Rot_matrix[5], Rot_matrix[8]); //! Roll
euler[1] = -asinf(Rot_matrix[2]); //! Pitch
euler[2] = atan2f(Rot_matrix[1], Rot_matrix[0]);
//DCM . ground to body
for(i=0;i<9;i++)
{
*(&(imu.DCMgb[0][0]) + i)=Rot_matrix[i];
}
imu.rollRad=euler[0];
imu.pitchRad=euler[1];
imu.yawRad=euler[2];
#define M_PI_F 3.1415926535897932
imu.roll=euler[0] * 180.0f / M_PI_F;
imu.pitch=euler[1] * 180.0f / M_PI_F;
imu.yaw=euler[2] * 180.0f / M_PI_F;
}