Skip to content

sharif-ml-lab/image_generation

Repository files navigation

Sharif ML-Lab Data Generation Toolkit

This toolkit provides a comprehensive CLI for generating and evaluating images and texts using various metrics and generation methods.

Installation

To install and run the requirments like Ollama, use Docker for easy setup:

docker compose up -d

Usage

The toolkit supports various operations divided into four main spaces: metric evaluations, AI-based generation, experiments, and pipelines. Below is a guide on how to use each functionality.

General CLI Format

./main.py --space <space_name> --method <method_name> --data <data_type> [other_options]
  • <space_name>: The operational space (metric, genai, experiment, or pipeline).
  • <method_name>: The specific method to use within the chosen space.
  • <data_type>: The type of data to work with (image or text).

Experiment CLI

For running experiments with image data:

./main.py --space experiment --data image --method tendency|noise --gpath <generated_path> --prompt <true_caption> --neg-prompt <false_caption>

Metric CLI

Evaluate various metrics for image and text data:

./main.py --space metric --data image|text --method <metric_type> --task <metric_name> --gpath <generated_path> [--rpath <real_path>] [--cpath <caption_path>] [--model <model_name>]

Examples of metric evaluations include:

  • Inception Score: --method quality --task inception
  • Frechet Score: --method quality --task frechet
  • Clip Score: --method alignment --task clip
  • VQA Responses: --method alignment --task vqa --model <model_name>
  • Perceptual Score: --method diversity --task perceptual

GenAI CLI

Generate images or texts using AI models:

./main.py --space genai --data image|text --method <generation_method> --task <generation_task> [options]

Pipeline CLI

Execute full pipelines for image generation:

./main.py --space pipeline --data image --method full --cpath <caption_path> --opath <output_path>

Additional Options

Depending on the operation, you can specify paths for generated, real, caption, or output data, as well as model names, prompts, and the number of images to generate.

Commit Guide

For contributors, please format your code using black before pushing:

black .

About

Image Generation :)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages