Skip to content

Use sgkit.distarray for count_variant_alleles and variant_stats #1255

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/cubed.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,4 +30,4 @@ jobs:

- name: Test with pytest
run: |
pytest -v sgkit/tests/test_aggregation.py -k "test_count_call_alleles" --use-cubed
pytest -v sgkit/tests/test_aggregation.py -k 'test_count_call_alleles or (test_count_variant_alleles and not test_count_variant_alleles__chunked[call_genotype]) or (test_variant_stats and not test_variant_stats__chunks[chunks2-False])' --use-cubed
27 changes: 16 additions & 11 deletions sgkit/stats/aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,11 +183,14 @@ def count_variant_alleles(
variables.validate(ds, {call_genotype: variables.call_genotype_spec})
n_alleles = ds.sizes["alleles"]
n_variant = ds.sizes["variants"]
G = da.asarray(ds[call_genotype]).reshape((n_variant, -1))
G = da.asarray(ds[call_genotype])
G = da.reshape(G, (n_variant, -1))
shape = (G.chunks[0], n_alleles)
# use uint64 dummy array to return uin64 counts array
N = np.empty(n_alleles, dtype=np.uint64)
AC = da.map_blocks(count_alleles, G, N, chunks=shape, drop_axis=1, new_axis=1)
AC = da.map_blocks(
count_alleles, G, N, chunks=shape, dtype=np.uint64, drop_axis=1, new_axis=1
)
AC = xr.DataArray(AC, dims=["variants", "alleles"])
else:
options = {variables.call_genotype, variables.call_allele_count}
Expand Down Expand Up @@ -692,22 +695,23 @@ def variant_stats(
using=variables.call_genotype, # improved performance
merge=False,
)[variant_allele_count]
G = da.array(ds[call_genotype].data)
G = da.asarray(ds[call_genotype].data)
H = xr.DataArray(
da.map_blocks(
count_hom,
lambda *args: count_hom(*args)[:, np.newaxis, :],
G,
np.zeros(3, np.uint64),
drop_axis=(1, 2),
new_axis=1,
drop_axis=2,
new_axis=2,
dtype=np.int64,
chunks=(G.chunks[0], 3),
chunks=(G.chunks[0], 1, 3),
),
dims=["variants", "categories"],
dims=["variants", "samples", "categories"],
)
H = H.sum(axis=1)
_, n_sample, _ = G.shape
n_called = H.sum(axis=-1)
call_rate = n_called / n_sample
call_rate = n_called.astype(float) / float(n_sample)
n_hom_ref = H[:, 0]
n_hom_alt = H[:, 1]
n_het = H[:, 2]
Expand All @@ -723,7 +727,8 @@ def variant_stats(
variables.variant_n_non_ref: n_non_ref,
variables.variant_allele_count: AC,
variables.variant_allele_total: allele_total,
variables.variant_allele_frequency: AC / allele_total,
variables.variant_allele_frequency: AC.astype(float)
/ allele_total.astype(float),
}
)
# for backwards compatible behavior
Expand Down Expand Up @@ -798,7 +803,7 @@ def sample_stats(
mixed_ploidy = ds[call_genotype].attrs.get("mixed_ploidy", False)
if mixed_ploidy:
raise ValueError("Mixed-ploidy dataset")
G = da.array(ds[call_genotype].data)
G = da.asarray(ds[call_genotype].data)
H = xr.DataArray(
da.map_blocks(
count_hom,
Expand Down
11 changes: 6 additions & 5 deletions sgkit/tests/test_aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ def test_count_variant_alleles__chunked(using):
chunks={"variants": 5, "samples": 5}
)
ac2 = count_variant_alleles(ds, using=using)
assert isinstance(ac2["variant_allele_count"].data, da.Array)
assert hasattr(ac2["variant_allele_count"].data, "chunks")
xr.testing.assert_equal(ac1, ac2)


Expand Down Expand Up @@ -786,13 +786,14 @@ def test_variant_stats__tetraploid():
)


@pytest.mark.parametrize(
"chunks", [(-1, -1, -1), (100, -1, -1), (100, 10, -1), (100, 10, 1)]
)
def test_variant_stats__chunks(chunks):
@pytest.mark.parametrize("precompute_variant_allele_count", [False, True])
@pytest.mark.parametrize("chunks", [(-1, -1, -1), (100, -1, -1), (100, 10, -1)])
def test_variant_stats__chunks(precompute_variant_allele_count, chunks):
ds = simulate_genotype_call_dataset(
n_variant=1000, n_sample=30, missing_pct=0.01, seed=0
)
if precompute_variant_allele_count:
ds = count_variant_alleles(ds)
expect = variant_stats(ds, merge=False).compute()
ds["call_genotype"] = ds["call_genotype"].chunk(chunks)
actual = variant_stats(ds, merge=False).compute()
Expand Down
Loading