Skip to content
This repository was archived by the owner on Jul 15, 2022. It is now read-only.

L-team #37

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
8 changes: 8 additions & 0 deletions 1 遗失宠物的智能寻找/Flask_server/.idea/.gitignore

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

12 changes: 12 additions & 0 deletions 1 遗失宠物的智能寻找/Flask_server/.idea/Flask_server.iml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

7 changes: 7 additions & 0 deletions 1 遗失宠物的智能寻找/Flask_server/.idea/misc.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 8 additions & 0 deletions 1 遗失宠物的智能寻找/Flask_server/.idea/modules.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Binary file not shown.
140 changes: 140 additions & 0 deletions 1 遗失宠物的智能寻找/Flask_server/Facenet/compare.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
"""Performs face alignment and calculates L2 distance between the embeddings of images."""

# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os, cv2
import copy
import argparse
import facenet
import align.detect_face

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)


def main(args):
images = load_and_align_data(args.image_files, args.image_size, args.margin, args.gpu_memory_fraction)
with tf.Graph().as_default():

with tf.Session() as sess:

# Load the model
facenet.load_model(args.model)

# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

# Run forward pass to calculate embeddings
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
emb = sess.run(embeddings, feed_dict=feed_dict)

nrof_images = len(args.image_files)

print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, args.image_files[i]))
print('')

# Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i, :], emb[j, :]))))
print(' %1.4f ' % dist, end='')
print('')


def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor

print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)

tmp_image_paths = copy.copy(image_paths)
img_list = []
for image in tmp_image_paths:
img = misc.imread(os.path.expanduser(image), mode='RGB')
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
if len(bounding_boxes) < 1:
image_paths.remove(image)
print("can't detect face, remove ", image)
continue
det = np.squeeze(bounding_boxes[0, 0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0] - margin / 2, 0)
bb[1] = np.maximum(det[1] - margin / 2, 0)
bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list.append(prewhitened)

cv2.imshow('im', prewhitened)
cv2.waitKey(0)

images = np.stack(img_list)
return images


def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument('model', type=str,
help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf '
'(.pb) file')
parser.add_argument('image_files', type=str, nargs='+', help='Images to compare')
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=160)
parser.add_argument('--margin', type=int,
help='Margin for the crop around the bounding box (height, width) in pixels.', default=32)
parser.add_argument('--gpu_memory_fraction', type=float,
help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)
return parser.parse_args(argv)


if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))
Loading