Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unpin numpy 2 #3115

Merged
merged 9 commits into from
Jul 2, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,7 @@ classifiers = [
]
dependencies = [
"anndata>=0.8",
# TODO: remove <2 requirement once PyNNDescent releases this fix:
# https://github.com/lmcinnes/pynndescent/issues/241
"numpy>=1.23,<2",
"numpy>=1.23",
"matplotlib>=3.6",
"pandas >=1.5",
"scipy>=1.8",
Expand Down
8 changes: 4 additions & 4 deletions src/scanpy/_utils/compute/is_constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def is_constant(
def _(a: NDArray, axis: Literal[0, 1] | None = None) -> bool | NDArray[np.bool_]:
# Should eventually support nd, not now.
if axis is None:
return (a == a.flat[0]).all()
return bool((a == a.flat[0]).all())
Copy link
Member Author

@flying-sheep flying-sheep Jun 21, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This makes the function return a bool instead of a np.bool_ scalar as the type hints say.

The two types behave almost identically but have a different repr with numpy 2, so this change passes the doctests.

if axis == 0:
return _is_constant_rows(a.T)
elif axis == 1:
Expand Down Expand Up @@ -116,9 +116,9 @@ def _is_constant_csr_rows(
indptr: NDArray[np.integer],
shape: tuple[int, int],
):
N = len(indptr) - 1
result = np.ones(N, dtype=np.bool_)
for i in range(N):
n = len(indptr) - 1
result = np.ones(n, dtype=np.bool_)
for i in range(n):
start = indptr[i]
stop = indptr[i + 1]
if stop - start == shape[1]:
Expand Down
112 changes: 72 additions & 40 deletions src/scanpy/metrics/_gearys_c.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
"""Geary's C autocorrelation."""
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I didn’t change anything in the two metrics modules, just reordered and reformatted (and replaced the removed np.float_ with np.float64, which in numpy 1.x are identical)


from __future__ import annotations

from functools import singledispatch
Expand Down Expand Up @@ -87,7 +89,7 @@ def gearys_c(
Examples
--------

Calculate Gearys C for each components of a dimensionality reduction:
Calculate Geary’s C for each components of a dimensionality reduction:

.. code:: python

Expand Down Expand Up @@ -135,29 +137,38 @@ def gearys_c(


@numba.njit(cache=True, parallel=True)
def _gearys_c_vec(data, indices, indptr, x):
def _gearys_c_vec(
data: np.ndarray,
indices: np.ndarray,
indptr: np.ndarray,
x: np.ndarray,
) -> float:
W = data.sum()
return _gearys_c_vec_W(data, indices, indptr, x, W)


@numba.njit(cache=True, parallel=True)
def _gearys_c_vec_W(data, indices, indptr, x, W):
N = len(indptr) - 1
x = x.astype(np.float_)
def _gearys_c_vec_W(
data: np.ndarray,
indices: np.ndarray,
indptr: np.ndarray,
x: np.ndarray,
W: np.float64,
):
n = len(indptr) - 1
x = x.astype(np.float64)
x_bar = x.mean()

total = 0.0
for i in numba.prange(N):
for i in numba.prange(n):
s = slice(indptr[i], indptr[i + 1])
i_indices = indices[s]
i_data = data[s]
total += np.sum(i_data * ((x[i] - x[i_indices]) ** 2))

numer = (N - 1) * total
numer = (n - 1) * total
denom = 2 * W * ((x - x_bar) ** 2).sum()
C = numer / denom

return C
return numer / denom


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expand All @@ -172,36 +183,47 @@ def _gearys_c_vec_W(data, indices, indptr, x, W):


@numba.njit(cache=True)
def _gearys_c_inner_sparse_x_densevec(g_data, g_indices, g_indptr, x, W):
def _gearys_c_inner_sparse_x_densevec(
g_data: np.ndarray,
g_indices: np.ndarray,
g_indptr: np.ndarray,
x: np.ndarray,
W: np.float64,
) -> float:
x_bar = x.mean()
total = 0.0
N = len(x)
for i in numba.prange(N):
n = len(x)
for i in numba.prange(n):
s = slice(g_indptr[i], g_indptr[i + 1])
i_indices = g_indices[s]
i_data = g_data[s]
total += np.sum(i_data * ((x[i] - x[i_indices]) ** 2))
numer = (N - 1) * total
numer = (n - 1) * total
denom = 2 * W * ((x - x_bar) ** 2).sum()
C = numer / denom
return C
return numer / denom


@numba.njit(cache=True)
def _gearys_c_inner_sparse_x_sparsevec( # noqa: PLR0917
g_data, g_indices, g_indptr, x_data, x_indices, N, W
):
x = np.zeros(N, dtype=np.float_)
g_data: np.ndarray,
g_indices: np.ndarray,
g_indptr: np.ndarray,
x_data: np.ndarray,
x_indices: np.ndarray,
n: int,
W: np.float64,
) -> float:
x = np.zeros(n, dtype=np.float64)
x[x_indices] = x_data
x_bar = np.sum(x_data) / N
x_bar = np.sum(x_data) / n
total = 0.0
N = len(x)
for i in numba.prange(N):
n = len(x)
for i in numba.prange(n):
s = slice(g_indptr[i], g_indptr[i + 1])
i_indices = g_indices[s]
i_data = g_data[s]
total += np.sum(i_data * ((x[i] - x[i_indices]) ** 2))
numer = (N - 1) * total
numer = (n - 1) * total
# Expanded from 2 * W * ((x_k - x_k_bar) ** 2).sum(), but uses sparsity
# to skip some calculations
# fmt: off
Expand All @@ -210,43 +232,53 @@ def _gearys_c_inner_sparse_x_sparsevec( # noqa: PLR0917
* (
np.sum(x_data ** 2)
- np.sum(x_data * x_bar * 2)
+ (x_bar ** 2) * N
+ (x_bar ** 2) * n
)
)
# fmt: on
C = numer / denom
return C
return numer / denom


@numba.njit(cache=True, parallel=True)
def _gearys_c_mtx(g_data, g_indices, g_indptr, X):
M, N = X.shape
assert N == len(g_indptr) - 1
def _gearys_c_mtx(
g_data: np.ndarray,
g_indices: np.ndarray,
g_indptr: np.ndarray,
X: np.ndarray,
) -> np.ndarray:
m, n = X.shape
assert n == len(g_indptr) - 1
W = g_data.sum()
out = np.zeros(M, dtype=np.float_)
for k in numba.prange(M):
x = X[k, :].astype(np.float_)
out = np.zeros(m, dtype=np.float64)
for k in numba.prange(m):
x = X[k, :].astype(np.float64)
out[k] = _gearys_c_inner_sparse_x_densevec(g_data, g_indices, g_indptr, x, W)
return out


@numba.njit(cache=True, parallel=True)
def _gearys_c_mtx_csr( # noqa: PLR0917
g_data, g_indices, g_indptr, x_data, x_indices, x_indptr, x_shape
):
M, N = x_shape
g_data: np.ndarray,
g_indices: np.ndarray,
g_indptr: np.ndarray,
x_data: np.ndarray,
x_indices: np.ndarray,
x_indptr: np.ndarray,
x_shape: tuple,
) -> np.ndarray:
m, n = x_shape
W = g_data.sum()
out = np.zeros(M, dtype=np.float_)
out = np.zeros(m, dtype=np.float64)
x_data_list = np.split(x_data, x_indptr[1:-1])
x_indices_list = np.split(x_indices, x_indptr[1:-1])
for k in numba.prange(M):
for k in numba.prange(m):
out[k] = _gearys_c_inner_sparse_x_sparsevec(
g_data,
g_indices,
g_indptr,
x_data_list[k],
x_indices_list[k],
N,
n,
W,
)
return out
Expand All @@ -261,15 +293,15 @@ def _gearys_c_mtx_csr( # noqa: PLR0917
def _gearys_c(g: sparse.csr_matrix, vals: np.ndarray | sparse.spmatrix) -> np.ndarray:
assert g.shape[0] == g.shape[1], "`g` should be a square adjacency matrix"
vals = _resolve_vals(vals)
g_data = g.data.astype(np.float_, copy=False)
g_data = g.data.astype(np.float64, copy=False)
if isinstance(vals, sparse.csr_matrix):
assert g.shape[0] == vals.shape[1]
new_vals, idxer, full_result = _check_vals(vals)
result = _gearys_c_mtx_csr(
g_data,
g.indices,
g.indptr,
new_vals.data.astype(np.float_, copy=False),
new_vals.data.astype(np.float64, copy=False),
new_vals.indices,
new_vals.indptr,
new_vals.shape,
Expand Down
Loading
Loading