Skip to content

Commit

Permalink
fix: add highlevel, behavior arguments to composite reducers (#2754)
Browse files Browse the repository at this point in the history
* fix: add `highlevel`, `behavior` arguments to composite reducers

* test: initial, simple test

* test: check two-arg functions

---------

Co-authored-by: Jim Pivarski <[email protected]>
  • Loading branch information
agoose77 and jpivarski authored Oct 13, 2023
1 parent ea8de12 commit 2748c0c
Show file tree
Hide file tree
Showing 11 changed files with 481 additions and 74 deletions.
25 changes: 25 additions & 0 deletions src/awkward/_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,31 @@ def wrap_layout(content, behavior=None, highlevel=True, like=None, allow_other=F
return content


def maybe_highlevel_to_lowlevel(obj):
"""
Args:
obj: an object
Calls #ak.to_layout and returns the result iff. the object is a high-level
Awkward object, otherwise the object is returned as-is.
This function should be removed once scalars are properly handled by `to_layout`.
"""
import awkward.highlevel

if isinstance(
obj,
(
awkward.highlevel.Array,
awkward.highlevel.Record,
awkward.highlevel.ArrayBuilder,
),
):
return awkward.to_layout(obj)
else:
return obj


def from_arraylib(array, regulararray, recordarray):
from awkward.contents import (
ByteMaskedArray,
Expand Down
38 changes: 31 additions & 7 deletions src/awkward/operations/ak_corr.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import awkward as ak
from awkward._behavior import behavior_of
from awkward._dispatch import high_level_function
from awkward._layout import maybe_highlevel_to_lowlevel, wrap_layout
from awkward._nplikes import ufuncs
from awkward._nplikes.numpylike import NumpyMetadata
from awkward._regularize import regularize_axis
Expand All @@ -11,7 +12,17 @@


@high_level_function()
def corr(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
def corr(
x,
y,
weight=None,
axis=None,
*,
keepdims=False,
mask_identity=False,
highlevel=True,
behavior=None,
):
"""
Args:
x: One coordinate to use in the correlation (anything #ak.to_layout recognizes).
Expand All @@ -33,6 +44,10 @@ def corr(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
empty lists results in None (an option type); otherwise, the
calculation is followed through with the reducers' identities,
usually resulting in floating-point `nan`.
highlevel (bool): If True, return an #ak.Array; otherwise, return
a low-level #ak.contents.Content subclass.
behavior (None or dict): Custom #ak.behavior for the output array, if
high-level.
Computes the correlation of `x` and `y` (many types supported, including
all Awkward Arrays and Records, must be broadcastable to each other).
Expand All @@ -55,12 +70,12 @@ def corr(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
yield x, y, weight

# Implementation
return _impl(x, y, weight, axis, keepdims, mask_identity)
return _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior)


def _impl(x, y, weight, axis, keepdims, mask_identity):
def _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior):
axis = regularize_axis(axis)
behavior = behavior_of(x, y, weight)
behavior = behavior_of(x, y, weight, behavior=behavior)
x = ak.highlevel.Array(
ak.operations.to_layout(x, allow_record=False, allow_other=False),
behavior=behavior,
Expand All @@ -76,8 +91,12 @@ def _impl(x, y, weight, axis, keepdims, mask_identity):
)

with np.errstate(invalid="ignore", divide="ignore"):
xmean = ak.operations.ak_mean._impl(x, weight, axis, False, mask_identity)
ymean = ak.operations.ak_mean._impl(y, weight, axis, False, mask_identity)
xmean = ak.operations.ak_mean._impl(
x, weight, axis, False, mask_identity, highlevel=True, behavior=behavior
)
ymean = ak.operations.ak_mean._impl(
y, weight, axis, False, mask_identity, highlevel=True, behavior=behavior
)
xdiff = x - xmean
ydiff = y - ymean
if weight is None:
Expand Down Expand Up @@ -130,4 +149,9 @@ def _impl(x, y, weight, axis, keepdims, mask_identity):
highlevel=True,
behavior=behavior,
)
return sumwxy / ufuncs.sqrt(sumwxx * sumwyy)
return wrap_layout(
maybe_highlevel_to_lowlevel(sumwxy / ufuncs.sqrt(sumwxx * sumwyy)),
behavior=behavior,
highlevel=highlevel,
allow_other=True,
)
38 changes: 31 additions & 7 deletions src/awkward/operations/ak_covar.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,25 @@
import awkward as ak
from awkward._behavior import behavior_of
from awkward._dispatch import high_level_function
from awkward._layout import maybe_highlevel_to_lowlevel, wrap_layout
from awkward._nplikes.numpylike import NumpyMetadata
from awkward._regularize import regularize_axis

np = NumpyMetadata.instance()


@high_level_function()
def covar(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
def covar(
x,
y,
weight=None,
axis=None,
*,
keepdims=False,
mask_identity=False,
highlevel=True,
behavior=None,
):
"""
Args:
x: One coordinate to use in the covariance calculation (anything #ak.to_layout recognizes).
Expand All @@ -32,6 +43,10 @@ def covar(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
empty lists results in None (an option type); otherwise, the
calculation is followed through with the reducers' identities,
usually resulting in floating-point `nan`.
highlevel (bool): If True, return an #ak.Array; otherwise, return
a low-level #ak.contents.Content subclass.
behavior (None or dict): Custom #ak.behavior for the output array, if
high-level.
Computes the covariance of `x` and `y` (many types supported, including
all Awkward Arrays and Records, must be broadcastable to each other).
Expand All @@ -52,12 +67,12 @@ def covar(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
yield x, y, weight

# Implementation
return _impl(x, y, weight, axis, keepdims, mask_identity)
return _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior)


def _impl(x, y, weight, axis, keepdims, mask_identity):
def _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior):
axis = regularize_axis(axis)
behavior = behavior_of(x, y, weight)
behavior = behavior_of(x, y, weight, behavior=behavior)
x = ak.highlevel.Array(
ak.operations.to_layout(x, allow_record=False, allow_other=False),
behavior=behavior,
Expand All @@ -73,8 +88,12 @@ def _impl(x, y, weight, axis, keepdims, mask_identity):
)

with np.errstate(invalid="ignore", divide="ignore"):
xmean = ak.operations.ak_mean._impl(x, weight, axis, False, mask_identity)
ymean = ak.operations.ak_mean._impl(y, weight, axis, False, mask_identity)
xmean = ak.operations.ak_mean._impl(
x, weight, axis, False, mask_identity, highlevel=True, behavior=behavior
)
ymean = ak.operations.ak_mean._impl(
y, weight, axis, False, mask_identity, highlevel=True, behavior=behavior
)
if weight is None:
sumw = ak.operations.ak_count._impl(
x,
Expand Down Expand Up @@ -109,4 +128,9 @@ def _impl(x, y, weight, axis, keepdims, mask_identity):
highlevel=True,
behavior=behavior,
)
return sumwxy / sumw
return wrap_layout(
maybe_highlevel_to_lowlevel(sumwxy / sumw),
behavior=behavior,
highlevel=highlevel,
allow_other=True,
)
26 changes: 21 additions & 5 deletions src/awkward/operations/ak_linear_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,17 @@


@high_level_function()
def linear_fit(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=False):
def linear_fit(
x,
y,
weight=None,
axis=None,
*,
keepdims=False,
mask_identity=False,
highlevel=True,
behavior=None,
):
"""
Args:
x: One coordinate to use in the linear fit (anything #ak.to_layout recognizes).
Expand All @@ -37,6 +47,10 @@ def linear_fit(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=Fa
empty lists results in None (an option type); otherwise, the
calculation is followed through with the reducers' identities,
usually resulting in floating-point `nan`.
highlevel (bool): If True, return an #ak.Array; otherwise, return
a low-level #ak.contents.Content subclass.
behavior (None or dict): Custom #ak.behavior for the output array, if
high-level.
Computes the linear fit of `y` with respect to `x` (many types supported,
including all Awkward Arrays and Records, must be broadcastable to each
Expand Down Expand Up @@ -72,12 +86,12 @@ def linear_fit(x, y, weight=None, axis=None, *, keepdims=False, mask_identity=Fa
yield x, y, weight

# Implementation
return _impl(x, y, weight, axis, keepdims, mask_identity)
return _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior)


def _impl(x, y, weight, axis, keepdims, mask_identity):
def _impl(x, y, weight, axis, keepdims, mask_identity, highlevel, behavior):
axis = regularize_axis(axis)
behavior = behavior_of(x, y, weight)
behavior = behavior_of(x, y, weight, behavior=behavior)
backend = backend_of(x, y, weight, coerce_to_common=True, default=cpu)
x = ak.highlevel.Array(
ak.operations.to_layout(x, allow_record=False, allow_other=False).to_backend(
Expand Down Expand Up @@ -247,4 +261,6 @@ def _impl(x, y, weight, axis, keepdims, mask_identity):
if scalar:
out = out[0]

return wrap_layout(out, highlevel=True, behavior=behavior, allow_other=scalar)
return wrap_layout(
out, highlevel=highlevel, behavior=behavior, allow_other=scalar
)
Loading

0 comments on commit 2748c0c

Please sign in to comment.