Skip to content

This algorithm is integrated with anvil website which identifies the alphabet present in the given input image.

Notifications You must be signed in to change notification settings

sakshibutala/CNN_AlphabetRecognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Alphabet Recognition System using Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a Deep Learning Algorithm widely used for character recognition.This algorithm is integrated with anvil website which identifies the alphabet present in the given input image.

File Description

AlphabetRecognitionfinal.ipynb - This jupyter notebook contains the algorithm for the CNN model.

Training.zip and Testing.zip - These folders contain images of alphabets ranging from a to z.

CNN_model.sav - This file contains the trained CNN model for identifying alphabets from images. This is a ready to use model and can directly be loaded to test images using the following command-

  import pickle
  model = pickle.load(open('CNN_model.sav','rb'))

Performance

Dataset

Training Dataset - 501 images belonging to 26 classes (a-z)

Testing Dataset - 260 images belonging to 26 classes (a-z)

Model


  Model: "sequential_7"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_13 (Conv2D)           (None, 30, 30, 32)        896       
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_14 (Conv2D)           (None, 13, 13, 32)        9248      
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 6, 6, 32)          0         
_________________________________________________________________
flatten_7 (Flatten)          (None, 1152)              0         
_________________________________________________________________
dense_13 (Dense)             (None, 128)               147584    
_________________________________________________________________
dense_14 (Dense)             (None, 26)                3354      
=================================================================
Total params: 161,082
Trainable params: 161,082
Non-trainable params: 0
_________________________________________________________________

Accuracy

  
Epoch 1/3
16/16 [==============================] - 1s 62ms/step - loss: 0.1866 - accuracy: 0.9082 - val_loss: 0.7112 - val_accuracy: 0.8657
Epoch 2/3
16/16 [==============================] - 1s 60ms/step - loss: 0.1769 - accuracy: 0.9301 - val_loss: 0.4118 - val_accuracy: 0.8662
Epoch 3/3
16/16 [==============================] - 1s 54ms/step - loss: 0.1672 - accuracy: 0.9261 - val_loss: 0.2001 - val_accuracy: 0.9342
  

Check out my medium article for a step by step tutorial on building a CNN model for Alphabet Recognition and deploying it with Anvil.

https://medium.com/@sakshibutala12/building-and-deploying-an-alphabet-recognition-system-7ab59654c676?sk=b6f75f1639e8c301995b412b74d589ca

Author

Sakshi Butala

About

This algorithm is integrated with anvil website which identifies the alphabet present in the given input image.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published