Skip to content

saezlab/GNNClinicalOutcomePrediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prediction of Clinical Features Using Graph Neural Networks

Discovery of functional motifs by association to clinical features using Graph Neural Networks.

Running

Training PNA For Regression

python train_test_controller.py --aggregators 'max' --bs 16 --dropout 0.0 --en my_experiment --epoch 200 --factor 0.8 --fcl 256 --gcn_h 64 --lr 0.001 --min_lr 0.0001 --model PNAConv --num_of_ff_layers 1 --num_of_gcn_layers 2 --patience 5 --scalers 'identity' --weight_decay 1e-05

Training GAT For Regression

python train_test_controller.py --aggregators None --bs 16 --dropout 0.0 --en my_experiment --epoch 200 --factor 0.2 --fcl 128 --gcn_h 64 --lr 0.001 --min_lr 2e-05 --model GATConv --num_of_ff_layers 1 --num_of_gcn_layers 3 --patience 20 --scalers None --weight_decay 0

GNNExplainer For PNA Regressor

python gnnexplainer.py --aggregators 'max' --bs 16 --dropout 0.0 --fcl 256 --gcn_h 64 --model PNAConv --num_of_ff_layers 1 --num_of_gcn_layers 2 --scalers 'identity' --idx 10

LIME Explainer for PNA Regressor

python lime.py --aggregators 'max' --bs 16 --dropout 0.0 --fcl 256 --gcn_h 64 --model PNAConv --num_of_ff_layers 1 --num_of_gcn_layers 2 --scalers 'identity' --idx 10

SHAP Explainer for PNA Regressor

python shap.py --aggregators 'max' --bs 16 --dropout 0.0 --fcl 256 --gcn_h 64 --model PNAConv --num_of_ff_layers 1 --num_of_gcn_layers 2 --scalers 'identity' --idx 10

Explainable cells and cell interactions

Original Graph SubGraph
Original Graph QualitativeResults

First Results of Hyperparameter Tuning

Explainer Results

Resources


Evaluating the Explainers

Biological/Biomedicine Papers & Repos That used/cited GNNExplainer Paper

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published