-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial commit. This wasn't under version control
- Loading branch information
0 parents
commit 998df09
Showing
63 changed files
with
18,732 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
%!TEX root = main.tex | ||
% | ||
% ToposOfGraphs.tex | ||
% | ||
|
||
\section{Worked Example: The Topos of Graphs} | ||
|
||
In this section we explore the topos of graphs. Let $\mathbf{C}$ be the category given by | ||
\[ \begin{tikzcd} | ||
V \arrow[r, bend left, "s"] \arrow[r, bend right, "t"] & E | ||
\end{tikzcd} \] | ||
and let $\mathscr{E} = \mathbf{Sets}^{\mathbf{C}^{op}}$. The objects of $\mathscr{E}$ may be viewed as graphs. Note that $\mathscr{E}$ is a connected topos because the terminal presheaf $1$ cannot be written as a non-trivial coproduct $1 = X + Y$. The topos $\mathscr{E}$ furthermore has a structure morphism to $\mathbf{Sets}$, namely | ||
\[ \gamma : \mathscr{E} \to \mathbf{Sets}, \qquad \gamma_*(X) = \Hom_{\mathscr{E}}(1,X), \; \gamma^*(S) = \Delta S. \] | ||
A connected object in $\mathscr{E}$ is a connected graph. Every $X \in \mathscr{E}$ thus has a decomposition $X = \sum_{i \in I} X_i$ into its connected components. So we have a functor | ||
\[ \pi_0 : \mathscr{E} \to \mathbf{Sets}, \qquad \sum_{i \in I} X_i \mapsto I. \] | ||
This functor $\pi_0$ is left adjoint to the constant presheaf functor $\Delta$, so | ||
\[ \pi_0 \dashv \gamma^* \dashv \gamma_*. \] | ||
Note that the subobject classifier $\Omega$, like for all presheaf categories, is given by | ||
\begin{align*} | ||
\Omega(V) &= \{ \text{sieves on } V \} = \{\emptyset, \mathbf{y}V \}, \\ | ||
\Omega(E) &= \{ \text{sieves on } E \} = \{\emptyset, \{s\}, \{t\}, \{s,t\}, \mathbf{y}E \}, \\ | ||
\Omega(s) &= \text{ pullback the sieve by } s, \\ | ||
\Omega(t) &= \text{ pullback the sieve by } t. | ||
\end{align*} | ||
So in a picture, the graph $\Omega$ looks like as in Figure 1. | ||
|
||
\begin{figure} | ||
\centering | ||
\begin{tikzpicture} | ||
\node (x) at (-2,0) {$\emptyset$}; | ||
\node (y) at ( 2,0) {$\mathbf{y}V$}; | ||
\path (x) edge [out=125, in=225, looseness=0.8, loop, distance=2cm, ->] node[left= 3pt] {$\emptyset$} (x); | ||
\path (y) edge [out= 45, in=135, looseness=0.8, loop, distance=2cm, ->] node[above=3pt] {$\mathbf{y}E$} (y); | ||
\path (y) edge [out=225, in=315, looseness=0.8, loop, distance=2cm, ->] node[below=3pt] {$\{s,t\}$} (y); | ||
\path (x) edge [out=340, in=190, ->] node[below=3pt] {$\{t\}$} (y); | ||
\path (y) edge [out=160, in=20, ->] node[above=3pt] {$\{s\}$} (x); | ||
\end{tikzpicture} | ||
\caption{The subobject classifier of $\mathscr{E}$} | ||
\end{figure} | ||
|
||
The subobject classifier is thus given by | ||
\[ \text{true} : 1 \to \Omega, \qquad v \mapsto \mathbf{y}V, \; e \mapsto \mathbf{y}E. \] | ||
If $X \in \mathscr{E}$ and $S \subseteq X$ a subgraph, then the classifying map $\chi_S : X \to \Omega$ works as follows: | ||
\begin{itemize} | ||
\item For each vertex $v \in X(V)$: | ||
\begin{itemize} | ||
\item If $v \not\in S(V)$, then $\chi_S(V)(v) = \emptyset$. | ||
\item If $v \in S(V)$, then $\chi_S(V)(v) = \mathbf{y}V$. | ||
\end{itemize} | ||
\item For each edge $e \in X(E)$: | ||
\begin{itemize} | ||
\item If $e \in S(E)$, then $\chi_S(E)(e) = \mathbf{y}E$. | ||
\item Else (we know that $e \not\in S(E)$): | ||
\begin{itemize} | ||
\item If $X(s)(e), X(t)(e) \in S(V)$, then $\chi_S(E)(e) = \{s,t\}$ (the edge is not in $S$, but both its source and target vertices are). | ||
\item Else if $X(s)(e) \in S(V)$, $X(t)(e) \not\in S(V)$, then $\chi_S(E)(e) = \{s\}$ (the edge is not in $S$, and only its source vertex is in $S$). | ||
\item Else if $X(s)(e) \not\in S(V)$ $X(t)(e) \in S(V)$, then $\chi_S(E)(e) = \{t\}$ (the edge is not in $S$, and only its target vertex is in $S$). | ||
\item Else $\chi_S(E)(e) = \emptyset$. | ||
\end{itemize} | ||
\end{itemize} | ||
\end{itemize} | ||
Basically, this works as you'd expect for subgraphs in a picture. You can leave out edges in a subgraph, but keep some of its target and source vertices. | ||
The negation operator $\neg : \Omega \to \Omega$ is a natural transformation with two components $\neg_V : \Omega V \to \Omega V$ and $\neg_E : \Omega E \to \Omega E$. They are defined as (cf. page 56 of Maclane\&Moerdijk) | ||
\[ \neg_V : \Omega V \to \Omega V, \qquad \neg_V(\emptyset) = \mathbf{y}V, \; \neg_V(\mathbf{y}V) = \emptyset, \] | ||
and | ||
\[ \neg_E : \Omega E \to \Omega E, \] | ||
explicitly calculated as | ||
\begin{align*} | ||
\neg_E(\emptyset) &= \mathbf{y}E, \\ | ||
\neg_E(\mathbf{y}E) &= \emptyset, \\ | ||
\neg_E(\{s\}) &= \emptyset\\ | ||
\neg_E(\{t\}) &= \emptyset\\ | ||
\neg_E(\{s,t\}) &= \emptyset\\ | ||
\end{align*} | ||
Now let $\mathscr{E}_{lcf}$ be the Boolean topos of locally constant objects of $\mathscr{E}$. Since $\mathscr{E}_{lcf}$ is Boolean, its subobject classifier is given by | ||
\[ \Omega_{lcf} = 1 + 1 \] | ||
generated by the morphisms | ||
\[ \text{true} : 1 \to \Omega, \qquad \text{false} = \neg \circ \text{true} : 1 \to \Omega. \] | ||
So $\Omega_{lcf}$ looks like Figure 2. | ||
|
||
\begin{figure} | ||
\centering | ||
\begin{tikzpicture} | ||
\node (x) at (-2,0) {$\emptyset$}; | ||
\node (y) at ( 2,0) {$\mathbf{y}V$}; | ||
\path (x) edge [out=125, in=225, looseness=0.8, loop, distance=2cm, ->] node[left= 3pt] {$\emptyset$} (x); | ||
\path (y) edge [out= 45, in=135, looseness=0.8, loop, distance=2cm, ->] node[above=3pt] {$\mathbf{y}E$} (y); | ||
\end{tikzpicture} | ||
\caption{The subobject classifier of $\mathscr{E}_{lcf}$} | ||
\end{figure} | ||
|
||
Recall that $C_n \in \mathscr{E}_{lcf}$ is the cyclic graph with $n$ vertices and $n$ edges. | ||
|
||
\begin{claim} | ||
Let $\mathbf{G}$ be the full subcategory of $\mathbf{I}$ whose objects are Galois. Then every object of $\mathbf{G}$ is of the form $(C_n,e)$ for some $n > 0$. | ||
\end{claim} | ||
\begin{proof} | ||
Write $C_n(V) = \{v_0,\ldots,v_{n-1}\}$ and $C_n(E) = \{e_0,\ldots,e_{n-1}\}$. Then $\Aut(C_n) = \Z/n\Z$, with action given by $m \cdot e_j = e_{j + m \bmod{n}}$. Hence $\Aut(C_n) \cong p^*(C_n)$, so $\mathbf{G}$ certainly contains all the $(C_n,e)$. Conversely suppose that $(A,e) \in \mathbf{G}$. Let $\varphi : A \times U \to \Delta n \times U$ be an isomorphism over $U$, where $U \to 1$ has global support. Note that $\# A = \# \Delta n = n$. Let $v \in A$ be a vertex. Let $\partial^+(v)$ be the number of incoming edges into the vertex $v$. Assume that $\partial^+(v) = 0$. Then for all $(v,u) \in A \times U$ we also have $\partial^+(v,u) = 0$. However $\varphi(v,u) = (v_j,u)$ for some $v_j \in C_n$, and $\partial^+(v_j,u) > 0$ for some $u \in U(V)$. This is in contradiction with $\partial^+(v,u) = 0$ for all $u \in U(V)$. So we conclude that $\partial^+(v) > 0$ for all $v \in A(V)$. This forces $\partial^+(v) = 1$ for all $v \in A(V)$, because $n = \sum_{v \in A(V)} \partial^+(v)$. Since we didn't use the fact that these edges are incoming, the same argument shows that the number of outgoing edges is also $1$ for each $v \in A(V)$. Finally, since $A$ is connected we may conclude that $A = C_n$. | ||
\end{proof} | ||
|
||
So the cycles form a cofinal subcategory of $\mathbf{I}$. Thus we may conclude that | ||
\[ \pi_1(\mathscr{E}, p) = \lim_{\leftarrow \mathbf{G}} \Aut(C_n) \cong \lim_{\leftarrow n} \Z/n\Z = \widehat{\Z}. \] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
\relax | ||
\providecommand\hyper@newdestlabel[2]{} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{johnstone77} | ||
\citation{johnstone77} | ||
\citation{MacLaneMoerdijk91} | ||
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Topos Theory Done Quick}{1}{chapter.2}} | ||
\@writefile{lof}{\addvspace {10\p@ }} | ||
\@writefile{lot}{\addvspace {10\p@ }} | ||
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Basic Definitions}{1}{section.2.1}} | ||
\newlabel{def:presheaf topos}{{2.1.1}{1}{}{theorem.2.1.1}{}} | ||
\newlabel{def:presheaf topos@cref}{{[definition][1][2,1]2.1.1}{1}} | ||
\newlabel{def:Yoneda functor}{{2.1.2}{1}{}{theorem.2.1.2}{}} | ||
\newlabel{def:Yoneda functor@cref}{{[definition][2][2,1]2.1.2}{1}} | ||
\newlabel{def:sheaf topos}{{2.1.3}{1}{}{theorem.2.1.3}{}} | ||
\newlabel{def:sheaf topos@cref}{{[definition][3][2,1]2.1.3}{1}} | ||
\citation{MacLaneMoerdijk91} | ||
\newlabel{def:Gset topos}{{2.1.4}{2}{}{theorem.2.1.4}{}} | ||
\newlabel{def:Gset topos@cref}{{[definition][4][2,1]2.1.4}{2}} | ||
\newlabel{def:topos}{{2.1.5}{2}{}{theorem.2.1.5}{}} | ||
\newlabel{def:topos@cref}{{[definition][5][2,1]2.1.5}{2}} | ||
\newlabel{def:subobject}{{2.1.7}{2}{}{theorem.2.1.7}{}} | ||
\newlabel{def:subobject@cref}{{[definition][7][2,1]2.1.7}{2}} | ||
\newlabel{def:sieve}{{2.1.8}{2}{}{theorem.2.1.8}{}} | ||
\newlabel{def:sieve@cref}{{[definition][8][2,1]2.1.8}{2}} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{MacLaneMoerdijk91} | ||
\newlabel{def:category of elements}{{2.1.13}{3}{}{theorem.2.1.13}{}} | ||
\newlabel{def:category of elements@cref}{{[definition][13][2,1]2.1.13}{3}} | ||
\newlabel{prop:every presheaf is a colimit of representables}{{2.1.14}{4}{}{theorem.2.1.14}{}} | ||
\newlabel{prop:every presheaf is a colimit of representables@cref}{{[proposition][14][2,1]2.1.14}{4}} | ||
\@writefile{toc}{\contentsline {section}{\numberline {2.2}The Morphisms Between Toposes}{4}{section.2.2}} | ||
\newlabel{def:geometric morphism}{{2.2.1}{4}{}{theorem.2.2.1}{}} | ||
\newlabel{def:geometric morphism@cref}{{[definition][1][2,2]2.2.1}{4}} | ||
\newlabel{prop:the structure morphism of a Grothendieck topos is unique}{{2.2.2}{4}{}{theorem.2.2.2}{}} | ||
\newlabel{prop:the structure morphism of a Grothendieck topos is unique@cref}{{[proposition][2][2,2]2.2.2}{4}} | ||
\newlabel{def:point of a topos}{{2.2.3}{5}{}{theorem.2.2.3}{}} | ||
\newlabel{def:point of a topos@cref}{{[definition][3][2,2]2.2.3}{5}} | ||
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Tensor Products}{5}{section.2.3}} | ||
\newlabel{sub:tensor_products}{{2.3}{5}{Tensor Products}{section.2.3}{}} | ||
\newlabel{sub:tensor_products@cref}{{[section][3][2]2.3}{5}} | ||
\newlabel{def:tensor product}{{2.3.1}{5}{}{theorem.2.3.1}{}} | ||
\newlabel{def:tensor product@cref}{{[definition][1][2,3]2.3.1}{5}} | ||
\newlabel{eq:tensor product definition}{{2.1}{5}{}{equation.2.3.1}{}} | ||
\newlabel{eq:tensor product definition@cref}{{[equation][1][2]2.1}{5}} | ||
\newlabel{eq:tensor product rule}{{2.2}{5}{Tensor Products}{equation.2.3.2}{}} | ||
\newlabel{eq:tensor product rule@cref}{{[equation][2][2]2.2}{5}} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{MacLaneMoerdijk91} | ||
\newlabel{thm:hom-tensor-adjunction}{{2.3.2}{6}{}{theorem.2.3.2}{}} | ||
\newlabel{thm:hom-tensor-adjunction@cref}{{[theorem][2][2,3]2.3.2}{6}} | ||
\newlabel{def:set valued flat functor}{{2.3.3}{6}{}{theorem.2.3.3}{}} | ||
\newlabel{def:set valued flat functor@cref}{{[definition][3][2,3]2.3.3}{6}} | ||
\newlabel{thm:points of the presheaf topos correspond to flat functors to SET}{{2.3.4}{6}{}{theorem.2.3.4}{}} | ||
\newlabel{thm:points of the presheaf topos correspond to flat functors to SET@cref}{{[theorem][4][2,3]2.3.4}{6}} | ||
\newlabel{constr:how to get points}{{2.3.5}{6}{How to find points}{theorem.2.3.5}{}} | ||
\newlabel{constr:how to get points@cref}{{[construction][5][2,3]2.3.5}{6}} | ||
\newlabel{def:flat functor for cocomplete E}{{2.3.6}{6}{}{theorem.2.3.6}{}} | ||
\newlabel{def:flat functor for cocomplete E@cref}{{[definition][6][2,3]2.3.6}{6}} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{MacLaneMoerdijk91} | ||
\citation{MacLaneMoerdijk91} | ||
\newlabel{thm:the adjunction holds for cocomplete E}{{2.3.7}{7}{}{theorem.2.3.7}{}} | ||
\newlabel{thm:the adjunction holds for cocomplete E@cref}{{[theorem][7][2,3]2.3.7}{7}} | ||
\newlabel{thm:geometric morphisms correpsond to flat functors to E}{{2.3.8}{7}{}{theorem.2.3.8}{}} | ||
\newlabel{thm:geometric morphisms correpsond to flat functors to E@cref}{{[theorem][8][2,3]2.3.8}{7}} | ||
\newlabel{thm:flat iff filtering}{{2.3.9}{7}{}{theorem.2.3.9}{}} | ||
\newlabel{thm:flat iff filtering@cref}{{[theorem][9][2,3]2.3.9}{7}} | ||
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Etale Spaces are Sheaves}{7}{section.2.4}} | ||
\newlabel{def:stalk of a sheaf}{{2.4.1}{7}{}{theorem.2.4.1}{}} | ||
\newlabel{def:stalk of a sheaf@cref}{{[definition][1][2,4]2.4.1}{7}} | ||
\newlabel{def:LH/X}{{2.4.2}{7}{}{theorem.2.4.2}{}} | ||
\newlabel{def:LH/X@cref}{{[definition][2][2,4]2.4.2}{7}} | ||
\newlabel{thm:equivalence of categories between etale spaces and sheaves}{{2.4.3}{7}{}{theorem.2.4.3}{}} | ||
\newlabel{thm:equivalence of categories between etale spaces and sheaves@cref}{{[theorem][3][2,4]2.4.3}{7}} | ||
\@setckpt{ToposTheory}{ | ||
\setcounter{page}{9} | ||
\setcounter{equation}{2} | ||
\setcounter{enumi}{0} | ||
\setcounter{enumii}{0} | ||
\setcounter{enumiii}{0} | ||
\setcounter{enumiv}{0} | ||
\setcounter{footnote}{0} | ||
\setcounter{mpfootnote}{0} | ||
\setcounter{part}{0} | ||
\setcounter{chapter}{2} | ||
\setcounter{section}{4} | ||
\setcounter{subsection}{0} | ||
\setcounter{subsubsection}{0} | ||
\setcounter{paragraph}{0} | ||
\setcounter{subparagraph}{0} | ||
\setcounter{figure}{0} | ||
\setcounter{table}{0} | ||
\setcounter{Item}{0} | ||
\setcounter{Hfootnote}{0} | ||
\setcounter{bookmark@seq@number}{10} | ||
\setcounter{parentequation}{0} | ||
\setcounter{float@type}{8} | ||
\setcounter{algorithm}{0} | ||
\setcounter{ALG@line}{0} | ||
\setcounter{ALG@rem}{0} | ||
\setcounter{ALG@nested}{0} | ||
\setcounter{ALG@Lnr}{2} | ||
\setcounter{ALG@blocknr}{10} | ||
\setcounter{ALG@storecount}{0} | ||
\setcounter{ALG@tmpcounter}{0} | ||
\setcounter{theorem}{3} | ||
\setcounter{exercise}{0} | ||
\setcounter{section@level}{1} | ||
} |
Oops, something went wrong.