Releases: rusty1s/pytorch_sparse
Releases · rusty1s/pytorch_sparse
0.6.18
What's Changed
- Support sparse element-wise multiplication in
SparseTensor
viasparse_mat1 * sparse_mat2
(#323) - Fix gradient computation in
to_symmetric
(#327) - Fix empty edge indices handling (#332)
- Add
mps
Apple silicon GPU Acceleration support (#335) - Fix shape of
node_weight
inmetis
computation (#342) - Add PyTorch 2.1.0 support (#344)
New Contributors
- @AndreasBergmeister made their first contribution in #323
- @ezyang made their first contribution in #325
- @jamesmyatt made their first contribution in #330
- @AgarwalSaurav made their first contribution in #331
- @NripeshN made their first contribution in #335
Full Changelog: 0.6.17...0.6.18
0.6.17
0.6.16
0.6.15
0.6.14
0.6.13
SparseTensor
:__eq__
functionalitySparseTensor
:add
functionality of two sparse matrices (#177)SparseTensor
:to_torch_csr_tensor
andfrom_torch_csr_tensor
functionalitySparseTensor
: Allow indexing vianp.array
(#194)SparseTensor
: Skip unnecessary assertions and enable non-blocking data transfers (#195)- Allow loading of CPU wheels in a PyTorch CUDA installation
PyTorch 1.10 is now required.
0.6.12
- (Internal) heterogeneous neighbor sampling support via
torch.ops.torch_sparse.hetero_neighbor_sample
- (Internal) heterogeneous graph transformer sampling support via
torch.ops.torch_sparse.hgt_sample
(thanks to @chantat) - Fixed a bug in
set_diag
in caseSparseTensor
does not hold any non-zero elements
0.6.11
0.6.10
This release brings PyTorch 1.9.0 and Python 3.9 support to torch-sparse
.
Additional functionality
- Added a check for
row.max() < sparse_sizes[0]
andcol.max() < sparse_sizes[1]
when creating aSparseTensor
in order to avoid unexpected behavior (thanks to @Adam1679) partition
now supports the additional optional argumentnode_weight
(thanks to @Spazierganger)
0.6.9
- Reduced the size of shared library files
- CUDA wheels can now also operate on CPU-only devices
spmm
now supportstorch.half
- Added parallelization strategies for CPU functionalities
- Fixed a bug in which
sample_adj
did not return a sparse matrix with sorted indices - Fixed a bug in
spmm
in casenum_edges < num_nodes