Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CloneToUninit impls #126877

Merged
merged 4 commits into from
Aug 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 22 additions & 105 deletions library/core/src/clone.rs
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,7 @@

#![stable(feature = "rust1", since = "1.0.0")]

use crate::mem::{self, MaybeUninit};
use crate::ptr;
mod uninit;

/// A common trait for the ability to explicitly duplicate an object.
///
Expand Down Expand Up @@ -248,7 +247,7 @@ pub unsafe trait CloneToUninit {
/// * `dst` must be properly aligned.
/// * `dst` must have the same [pointer metadata] (slice length or `dyn` vtable) as `self`.
///
/// [valid]: ptr#safety
/// [valid]: crate::ptr#safety
/// [pointer metadata]: crate::ptr::metadata()
///
/// # Panics
Expand All @@ -272,124 +271,42 @@ pub unsafe trait CloneToUninit {

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for T {
default unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::write().
unsafe {
// We hope the optimizer will figure out to create the cloned value in-place,
// skipping ever storing it on the stack and the copy to the destination.
ptr::write(dst, self.clone());
}
}
}

// Specialized implementation for types that are [`Copy`], not just [`Clone`],
// and can therefore be copied bitwise.
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Copy> CloneToUninit for T {
#[inline]
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(self, dst, 1);
}
// SAFETY: we're calling a specialization with the same contract
unsafe { <T as self::uninit::CopySpec>::clone_one(self, dst) }
}
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for [T] {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
default unsafe fn clone_to_uninit(&self, dst: *mut Self) {
let len = self.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The produced `&mut` is valid because:
// * The caller is obligated to provide a pointer which is valid for writes.
// * All bytes pointed to are in MaybeUninit, so we don't care about the memory's
// initialization status.
let uninit_ref = unsafe { &mut *(dst as *mut [MaybeUninit<T>]) };

// Copy the elements
let mut initializing = InitializingSlice::from_fully_uninit(uninit_ref);
for element_ref in self.iter() {
// If the clone() panics, `initializing` will take care of the cleanup.
initializing.push(element_ref.clone());
}
// If we reach here, then the entire slice is initialized, and we've satisfied our
// responsibilities to the caller. Disarm the cleanup guard by forgetting it.
mem::forget(initializing);
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: we're calling a specialization with the same contract
unsafe { <T as self::uninit::CopySpec>::clone_slice(self, dst) }
}
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Copy> CloneToUninit for [T] {
unsafe impl CloneToUninit for str {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
let len = self.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(self.as_ptr(), dst.as_mut_ptr(), len);
}
// SAFETY: str is just a [u8] with UTF-8 invariant
unsafe { self.as_bytes().clone_to_uninit(dst as *mut [u8]) }
}
}

/// Ownership of a collection of values stored in a non-owned `[MaybeUninit<T>]`, some of which
/// are not yet initialized. This is sort of like a `Vec` that doesn't own its allocation.
/// Its responsibility is to provide cleanup on unwind by dropping the values that *are*
/// initialized, unless disarmed by forgetting.
///
/// This is a helper for `impl<T: Clone> CloneToUninit for [T]`.
struct InitializingSlice<'a, T> {
data: &'a mut [MaybeUninit<T>],
/// Number of elements of `*self.data` that are initialized.
initialized_len: usize,
}

impl<'a, T> InitializingSlice<'a, T> {
#[inline]
fn from_fully_uninit(data: &'a mut [MaybeUninit<T>]) -> Self {
Self { data, initialized_len: 0 }
}

/// Push a value onto the end of the initialized part of the slice.
///
/// # Panics
///
/// Panics if the slice is already fully initialized.
#[inline]
fn push(&mut self, value: T) {
MaybeUninit::write(&mut self.data[self.initialized_len], value);
self.initialized_len += 1;
}
}

impl<'a, T> Drop for InitializingSlice<'a, T> {
#[cold] // will only be invoked on unwind
fn drop(&mut self) {
let initialized_slice = ptr::slice_from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(self.data),
self.initialized_len,
);
// SAFETY:
// * the pointer is valid because it was made from a mutable reference
// * `initialized_len` counts the initialized elements as an invariant of this type,
// so each of the pointed-to elements is initialized and may be dropped.
unsafe {
ptr::drop_in_place::<[T]>(initialized_slice);
}
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl CloneToUninit for crate::ffi::CStr {
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: For now, CStr is just a #[repr(trasnsparent)] [c_char] with some invariants.
// And we can cast [c_char] to [u8] on all supported platforms (see: to_bytes_with_nul).
// The pointer metadata properly preserves the length (NUL included).
// See: `cstr_metadata_is_length_with_nul` in tests.
unsafe { self.to_bytes_with_nul().clone_to_uninit(dst as *mut [u8]) }
}
}

Expand Down
128 changes: 128 additions & 0 deletions library/core/src/clone/uninit.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
use crate::mem::{self, MaybeUninit};
use crate::ptr;

/// Private specialization trait used by CloneToUninit, as per
/// [the dev guide](https://std-dev-guide.rust-lang.org/policy/specialization.html).
pub(super) unsafe trait CopySpec: Clone {
unsafe fn clone_one(src: &Self, dst: *mut Self);
unsafe fn clone_slice(src: &[Self], dst: *mut [Self]);
}

unsafe impl<T: Clone> CopySpec for T {
#[inline]
default unsafe fn clone_one(src: &Self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::write().
unsafe {
// We hope the optimizer will figure out to create the cloned value in-place,
// skipping ever storing it on the stack and the copy to the destination.
ptr::write(dst, src.clone());
}
}

#[inline]
#[cfg_attr(debug_assertions, track_caller)]
default unsafe fn clone_slice(src: &[Self], dst: *mut [Self]) {
let len = src.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The produced `&mut` is valid because:
// * The caller is obligated to provide a pointer which is valid for writes.
// * All bytes pointed to are in MaybeUninit, so we don't care about the memory's
// initialization status.
let uninit_ref = unsafe { &mut *(dst as *mut [MaybeUninit<T>]) };

// Copy the elements
let mut initializing = InitializingSlice::from_fully_uninit(uninit_ref);
for element_ref in src {
// If the clone() panics, `initializing` will take care of the cleanup.
initializing.push(element_ref.clone());
}
// If we reach here, then the entire slice is initialized, and we've satisfied our
// responsibilities to the caller. Disarm the cleanup guard by forgetting it.
mem::forget(initializing);
}
}

// Specialized implementation for types that are [`Copy`], not just [`Clone`],
// and can therefore be copied bitwise.
unsafe impl<T: Copy> CopySpec for T {
#[inline]
unsafe fn clone_one(src: &Self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(src, dst, 1);
}
}

#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_slice(src: &[Self], dst: *mut [Self]) {
let len = src.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), len);
}
}
}

/// Ownership of a collection of values stored in a non-owned `[MaybeUninit<T>]`, some of which
/// are not yet initialized. This is sort of like a `Vec` that doesn't own its allocation.
/// Its responsibility is to provide cleanup on unwind by dropping the values that *are*
/// initialized, unless disarmed by forgetting.
///
/// This is a helper for `impl<T: Clone> CloneToUninit for [T]`.
struct InitializingSlice<'a, T> {
data: &'a mut [MaybeUninit<T>],
/// Number of elements of `*self.data` that are initialized.
initialized_len: usize,
}

impl<'a, T> InitializingSlice<'a, T> {
#[inline]
fn from_fully_uninit(data: &'a mut [MaybeUninit<T>]) -> Self {
Self { data, initialized_len: 0 }
}

/// Push a value onto the end of the initialized part of the slice.
///
/// # Panics
///
/// Panics if the slice is already fully initialized.
#[inline]
fn push(&mut self, value: T) {
MaybeUninit::write(&mut self.data[self.initialized_len], value);
self.initialized_len += 1;
}
}

impl<'a, T> Drop for InitializingSlice<'a, T> {
#[cold] // will only be invoked on unwind
fn drop(&mut self) {
let initialized_slice = ptr::slice_from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(self.data),
self.initialized_len,
);
// SAFETY:
// * the pointer is valid because it was made from a mutable reference
// * `initialized_len` counts the initialized elements as an invariant of this type,
// so each of the pointed-to elements is initialized and may be dropped.
unsafe {
ptr::drop_in_place::<[T]>(initialized_slice);
}
}
}
40 changes: 40 additions & 0 deletions library/core/tests/clone.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
use core::clone::CloneToUninit;
use core::ffi::CStr;
use core::mem::MaybeUninit;
use core::ptr;

#[test]
#[allow(suspicious_double_ref_op)]
Expand Down Expand Up @@ -81,3 +83,41 @@ fn test_clone_to_uninit_slice_drops_on_panic() {
drop(a);
assert_eq!(COUNTER.load(Relaxed), 0);
}

#[test]
fn test_clone_to_uninit_str() {
let a = "hello";

let mut storage: MaybeUninit<[u8; 5]> = MaybeUninit::uninit();
unsafe { a.clone_to_uninit(storage.as_mut_ptr() as *mut [u8] as *mut str) };
assert_eq!(a.as_bytes(), unsafe { storage.assume_init() }.as_slice());

let mut b: Box<str> = "world".into();
assert_eq!(a.len(), b.len());
assert_ne!(a, &*b);
unsafe { a.clone_to_uninit(ptr::from_mut::<str>(&mut b)) };
assert_eq!(a, &*b);
}

#[test]
fn test_clone_to_uninit_cstr() {
let a = c"hello";

let mut storage: MaybeUninit<[u8; 6]> = MaybeUninit::uninit();
unsafe { a.clone_to_uninit(storage.as_mut_ptr() as *mut [u8] as *mut CStr) };
assert_eq!(a.to_bytes_with_nul(), unsafe { storage.assume_init() }.as_slice());

let mut b: Box<CStr> = c"world".into();
assert_eq!(a.count_bytes(), b.count_bytes());
assert_ne!(a, &*b);
unsafe { a.clone_to_uninit(ptr::from_mut::<CStr>(&mut b)) };
assert_eq!(a, &*b);
}

#[test]
fn cstr_metadata_is_length_with_nul() {
let s: &CStr = c"abcdef";
let p: *const CStr = ptr::from_ref(s);
let bytes: *const [u8] = p as *const [u8];
assert_eq!(s.to_bytes_with_nul().len(), bytes.len());
}
13 changes: 13 additions & 0 deletions library/std/src/ffi/os_str.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,13 @@
#[cfg(test)]
mod tests;

use core::clone::CloneToUninit;

use crate::borrow::{Borrow, Cow};
use crate::collections::TryReserveError;
use crate::hash::{Hash, Hasher};
use crate::ops::{self, Range};
use crate::ptr::addr_of_mut;
use crate::rc::Rc;
use crate::str::FromStr;
use crate::sync::Arc;
Expand Down Expand Up @@ -1261,6 +1264,16 @@ impl Clone for Box<OsStr> {
}
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl CloneToUninit for OsStr {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: we're just a wrapper around a platform-specific Slice
unsafe { self.inner.clone_to_uninit(addr_of_mut!((*dst).inner)) }
}
}

#[stable(feature = "shared_from_slice2", since = "1.24.0")]
impl From<OsString> for Arc<OsStr> {
/// Converts an [`OsString`] into an <code>[Arc]<[OsStr]></code> by moving the [`OsString`]
Expand Down
17 changes: 17 additions & 0 deletions library/std/src/ffi/os_str/tests.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
use super::*;
use crate::mem::MaybeUninit;
use crate::ptr;

#[test]
fn test_os_string_with_capacity() {
Expand Down Expand Up @@ -286,3 +288,18 @@ fn slice_surrogate_edge() {
assert_eq!(post_crab.slice_encoded_bytes(..4), "🦀");
assert_eq!(post_crab.slice_encoded_bytes(4..), surrogate);
}

#[test]
fn clone_to_uninit() {
let a = OsStr::new("hello.txt");

let mut storage = vec![MaybeUninit::<u8>::uninit(); size_of_val::<OsStr>(a)];
unsafe { a.clone_to_uninit(ptr::from_mut::<[_]>(storage.as_mut_slice()) as *mut OsStr) };
assert_eq!(a.as_encoded_bytes(), unsafe { MaybeUninit::slice_assume_init_ref(&storage) });

let mut b: Box<OsStr> = OsStr::new("world.exe").into();
assert_eq!(size_of_val::<OsStr>(a), size_of_val::<OsStr>(&b));
assert_ne!(a, &*b);
unsafe { a.clone_to_uninit(ptr::from_mut::<OsStr>(&mut b)) };
assert_eq!(a, &*b);
}
Loading
Loading