Skip to content

Python client library for the Galileo platform πŸ”­

License

Notifications You must be signed in to change notification settings

rungalileo/galileo-python

Repository files navigation

Galileo Python SDK

PyPI version codecov.io

The Python client library for the Galileo AI platform.

Getting Started

Installation

pip install galileo

Setup

Set the following environment variables:

  • GALILEO_API_KEY: Your Galileo API key
  • GALILEO_PROJECT: (Optional) Project name
  • GALILEO_LOG_STREAM: (Optional) Log stream name
  • GALILEO_LOGGING_DISABLED: (Optional) Disable collecting and sending logs to galileo.

Note: if you would like to point to an environment other than app.galileo.ai, you'll need to set the GALILEO_CONSOLE_URL environment variable.

Usage

Logging traces

import os

from galileo import galileo_context, openai

# If you've set your GALILEO_PROJECT and GALILEO_LOG_STREAM env vars, you can skip this step
galileo_context.init(project="your-project-name", log_stream="your-log-stream-name")

# Initialize the Galileo wrapped OpenAI client
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

def call_openai():
    chat_completion = client.chat.completions.create(
        messages=[{"role": "user", "content": "Say this is a test"}], model="gpt-4o"
    )

    return chat_completion.choices[0].message.content


# This will create a single span trace with the OpenAI call
call_openai()

# This will upload the trace to Galileo
galileo_context.flush()

You can also use the @log decorator to log spans. Here's how to create a workflow span with two nested LLM spans:

from galileo import log

@log
def make_nested_call():
    call_openai()
    call_openai()

# If you've set your GALILEO_PROJECT and GALILEO_LOG_STREAM env vars, you can skip this step
galileo_context.init(project="your-project-name", log_stream="your-log-stream-name")

# This will create a trace with a workflow span and two nested LLM spans containing the OpenAI calls
make_nested_call()

Here's how to create a retriever span using the decorator:

from galileo import log

@log(span_type="retriever")
def retrieve_documents(query: str):
    return ["doc1", "doc2"]

# This will create a trace with a retriever span containing the documents in the output
retrieve_documents(query="history")

Here's how to create a tool span using the decorator:

from galileo import log

@log(span_type="tool")
def tool_call(input: str = "tool call input"):
    return "tool call output"

# This will create a trace with a tool span containing the tool call output
tool_call(input="question")

# This will upload the trace to Galileo
galileo_context.flush()

In some cases, you may want to wrap a block of code to start and flush a trace automatically. You can do this using the galileo_context context manager:

from galileo import galileo_context

# This will log a block of code to the project and log stream specified in the context manager
with galileo_context():
    content = make_nested_call()
    print(content)

galileo_context also allows you specify a separate project and log stream for the trace:

from galileo import galileo_context

# This will log to the project and log stream specified in the context manager
with galileo_context(project="gen-ai-project", log_stream="test2"):
    content = make_nested_call()
    print(content)

You can also use the GalileoLogger for manual logging scenarios:

from galileo.logger import GalileoLogger

# This will log to the project and log stream specified in the logger constructor
logger = GalileoLogger(project="gen-ai-project", log_stream="test3")
trace = logger.start_trace("Say this is a test")

logger.add_llm_span(
    input="Say this is a test",
    output="Hello, this is a test",
    model="gpt-4o",
    num_input_tokens=10,
    num_output_tokens=3,
    total_tokens=13,
    duration_ns=1000,
)

logger.conclude(output="Hello, this is a test", duration_ns=1000)
logger.flush() # This will upload the trace to Galileo

OpenAI streaming example:

import os

from galileo import openai

client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

stream = client.chat.completions.create(
    messages=[{"role": "user", "content": "Say this is a test"}], model="gpt-4o", stream=True,
)

# This will create a single span trace with the OpenAI call
for chunk in stream:
    print(chunk.choices[0].delta.content or "", end="")

In some cases (like long-running processes), it may be necessary to explicitly flush the trace to upload it to Galileo:

import os

from galileo import galileo_context, openai

galileo_context.init(project="your-project-name", log_stream="your-log-stream-name")

# Initialize the Galileo wrapped OpenAI client
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

def call_openai():
    chat_completion = client.chat.completions.create(
        messages=[{"role": "user", "content": "Say this is a test"}], model="gpt-4o"
    )

    return chat_completion.choices[0].message.content


# This will create a single span trace with the OpenAI call
call_openai()

# This will upload the trace to Galileo
galileo_context.flush()

Using the Langchain callback handler:

from galileo.handlers.langchain import GalileoCallback
from langchain.schema import HumanMessage
from langchain_openai import ChatOpenAI

# You can optionally pass a GalileoLogger instance to the callback if you don't want to use the default context
callback = GalileoCallback()

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, callbacks=[callback])

# Create a message with the user's query
messages = [HumanMessage(content="What is LangChain and how is it used with OpenAI?")]

# Make the API call
response = llm.invoke(messages)

print(response.content)

Datasets

Create a dataset:

from galileo.datasets import create_dataset

create_dataset(
    name="names",
    content=[
        {"name": "Lola"},
        {"name": "Jo"},
    ]
)

Get a dataset:

from galileo.datasets import get_dataset

dataset = get_dataset(name="names")

List all datasets:

from galileo.datasets import list_datasets

datasets = list_datasets()

Experiments

Run an experiment with a prompt template:

from galileo.datasets import get_dataset
from galileo.experiments import run_experiment
from galileo.prompts import create_prompt_template
from galileo.resources.models import MessageRole, Message

prompt = create_prompt_template(
    name="my-prompt",
    project="new-project",
    messages=[
        Message(role=MessageRole.SYSTEM, content="you are a helpful assistant"),
        Message(role=MessageRole.USER, content="why is sky blue?")
    ]
)

results = run_experiment(
    "my-experiment",
    dataset=get_dataset(name="storyteller-dataset"),
    prompt=prompt,
    metrics=["correctness"],
    project="andrii-new-project",
)

Run an experiment with a runner function with local dataset:

import openai
from galileo.experiments import run_experiment


dataset = [
    {"name": "Lola"},
    {"name": "Jo"},
]

def runner(input):
    return openai.chat.completions.create(
        model="gpt-4o",
        messages=[
            {"role": "user", "content": f"Say hello: {input['name']}"}
        ],
    ).choices[0].message.content

run_experiment(
    "test experiment runner",
    project="awesome-new-project",
    dataset=dataset,
    function=runner,
    metrics=['output_tone'],
)

Local Installation

Pre-Requisites

  1. Clone this repo locally.
  2. Install pyenv.
  3. Install poetry: curl -sSL https://install.python-poetry.org | python3 -

Setup

  1. Setup a virtual environment:
pyenv install 3.10.13
pyenv local 3.10.13

poetry will create a virtual environment using that Python version when it installs dependencies. You can validate that with:

NOTE: since The shell command was moved to a plugin: poetry-plugin-shell https://python-poetry.org/docs/cli/#shell

The easiest way to install the shell plugin is via the self add command of Poetry:

poetry self add poetry-plugin-shell
poetry shell
poetry run python --version

which should print out Python 3.10.13.

  1. Install dependencies and setup pre-commit hooks:
pip3 install --upgrade invoke
inv setup
  1. Copy .env.example to .env and populate the values.

Auto-generating the API client

  1. Run ./scripts/import_api_client.sh to update the openapi.yml file with the latest
  2. Run ./scripts/auto-generate-api-client.sh to generate the API client