#Date: 10 April 2024
#Time: 9:20 am
#Author: Dr. Ruchika Bhat
mouse <-readRDS("FinalInputfile.rds")
counts_matrix <-GetAssayData(mouse, assay='RNA',slot='counts')
writeMM(counts_matrix, file=paste0(file='matrix.mtx'))
write.csv(mouse@[email protected],file='pca.csv', quote=F, row.names=F)
write.table(data.frame('gene'=rownames(counts_matrix)),file='gene_names.csv',quote=F,row.names=F,col.names=F)
mouse$barcode<-colnames(mouse)
mouse$UMAP_1<-mouse@[email protected][,1]
mouse$UMAP_2<-mouse@[email protected][,2]
write.csv([email protected],file='metadata.csv', quote=F,row.names=F)
#######################################################################################
import pandas as pd
import matplotlib.pyplot as pl
import scanpy as sc
import igraph
import scvelo as scv
import loompy as lmp
import anndata
from scipy import io
from scipy.sparse import coo_matrix, csr_matrix
import os```
X= io.mmread("/data-store/iplant/home/ruchikabhat/data/CellOracle/matrix.mtx")
adata =anndata.AnnData(X=X.transpose().tocsr())
metadata = pd.read_csv("/data-store/iplant/home/ruchikabhat/data/CellOracle/metadata.csv")
with open("/data-store/iplant/home/ruchikabhat/data/CellOracle/gene_names.csv",'r') as f:
gene_names = f.read().splitlines()
adata.obs = metadata
adata.obs.index =adata.obs['barcode']
adata.var.index = gene_names
pca =pd.read_csv("/data-store/iplant/home/ruchikabhat/data/CellOracle/pca.csv")
pca.index =adata.obs.index
adata.obsm['X_pca'] = pca.to_numpy()
adata.obsm['X_umap'] = np.vstack((adata.obs['UMAP_1'].to_numpy(), adata.obs['UMAP_2'].to_numpy())).T
sc.pl.umap(adata, color =['Clusters'],frameon=False, save=True)
# Save everything as a h5ad file
adata.write("/data-store/iplant/home/ruchikabhat/data/CellOracle/mouse.h5ad")
# To read this (h5ad) data back
adata=sc.read_h5ad("/data-store/iplant/home/ruchikabhat/data/CellOracle/mouse.h5ad")
###################################### DONE YAYYY! #######################################################