Skip to content

Instructor resources for "Machine-readable corporate financial statements" course

Notifications You must be signed in to change notification settings

ru-corporate/teaching-2018

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Преподавание-2018

  1. Подготовительные задания

    • краткий повтор системы бухучета и форм отчетности
    • перевод первичной отчетности в переменные
    • используемые классификаторы (ИНН, ОКПО)
    • альтернативные источники статистики (Росстат, ФНС, отраслевые данные)
    • системы корпоративной отчетности (СПАРК, БИР-Аналитика)
    • краткий сквозной пример работы с данными в python
  2. Подготовка данных

  • есть API для доступа к данным
  • найдены и устранены ошибки
  • оценена полнота данных
  1. Проведена сегментация компаний. Доступны выборки:

    • крупные, малые и средние предприятия
    • отрасли
    • регионы
    • перекрестные выборки
  2. Финансовая аналитика:

    • расчет показателей финансовой устойчивости
    • ситуация банкротства (чистые активы, обслуживание обязательств)
    • расчет показателей обслуживание долга (DSCR)
    • структура и стоимость капитала фирмы (с дополнительными данными)
  3. Экономическая аналитика

  • динамично растущие компании (активы)
  • инвестирующие компании
  • проблемные активы
  • связь отраслевых и корпоративных показателей
  1. Способы представления результатов
  • word/иллюстрации
  • ipython / beamer
  • latex(kile)
  • sweave/pweave
  • knitr/ knitpy
  • markdown/rst/sphinx
  • html/distillpub
  • приложения (flask/jekyll/bokeh/plotly)
  • doconce
  • pandoc
  • bibliographies(JabRef)
  1. Дополнительные темы

teaching-2018

Instructor resources for "Machine-readable corporate financial statements" course

TODO

Ссылки

Доп.материалы

  • my peer papers/presentation: (1) R&D

Клуб экспертов по цифровой экономике ДВФУ

https://leader-id.ru/event/10636/# Дата: 23 августа - 31 декабря 2018 Адрес: Россия, Приморский край, г. Владивосток, пос. Аякс, 10, кампус ДВФУ, корпус А, 8 уровень, Точка кипения Владивосток Контактное лицо: Шушарина Татьяна [email protected] +7 (924) 233-99-98

Look at a business case lecture

Найти ссылку

Ideas

  • Google dataset search
  • doi / citiation
  • протянуть тонкий pipeline
  • bir / spark

Takeaways:

  • dataset API
  • scope metrics
  • corporate map
  • research topics and questions
  • draft publication

Results

  1. business service (credit scoring automation)
  2. policy recommendation (taxation)
  3. disclosure / statistic survey recommendation
  4. new financing product
  5. new research insight (problem, context, solution)

Theory of the firm:

Instructor outline - 2018

Components and delieverables

Часть 1. Подготовка данных

ETL                                       удобство доступа, нет потерь данных
SI                                        нет ошибок         
EDA     notebook                          всестороннии
RC      актуальность+научная новизна      понятные, новые
SO      задачи и решения                  нужные
VIZ     charts                            красивые, понятные
PRES    pdf/slides                        интересная 

Team roles

------------------------------------------------------------------

Data access      ***********
Clean dataset          ***********
Analysis                    ********************
Presentation                             ****************
Dessemination                                      ***************  
Research / business value                                       (@)

------------------------------------------------------------------

Profit: replicable result, control of data pipeline  
  • ETL (data engineer) -> API endpoint
  • statistics analyst -> data map
  • financial analyst -> empriric financial ratios
  • researcher -> list of use cases and research questions
  • visualisation expert -> all charts
  • scientific publisher -> format for publication output
  • writer/editor/proof reader
  • outreach/PR -> citations

Excercises

  • review of agile methodologies
  • ds cookiecutter
  • top 3 questions for perfect dataset
  • review scientific publishing methodologies

Learning objectives

  • ORG: course organisation

    • thesis + data-model-view
    • data + excercise + finding + decision case
    • slim end-to-end data pipeline build first
    • 'agile' methodologies
  • INTRO-FIN:

    • corporate reporting and disclosure procedures
    • financial statements use cases
    • available aggregate data sources and their limitations
    • refresher on accounting
    • theory of firm, continious reporting, continious assurance
  • INTRO-DS:

    • research as a data pipeline (using ds cookiecutter)
    • presentation and delievery of research (open topic)
  • ETL: load, inspect and clean large tabular dataset

    • load data from immutable source
    • perform data consistency checks (control datapoints, identities, outliers)
    • transform data
    • create and document access endpoints (API)
  • STAT: estimate dataset coverage ratios with respect to other statistics sources

    • define and compute comparison metrics (value added, output, debt, fixed assets)
    • access comparison datasets
    • represent several dimensions of coverage on a chart (map)

*** TODO: add part 2, 3 ***

Stages:

- Part 1: Data preparation (ETL + validation): data analyst
- Part 2: Excercises, research findings and business cases (EDA - problem space - solutions): researcher/business analyst
- Part 3: Viz, frontend and presentation (notebook, interactive apps, docs, pdfs, etc.): 'artist'/'releaser'/'editor'/'frontend specialist'

Financial statements only:

- understanding bookkeping, double entry, company financial statements as queries general ledger  
- capital structure 
- profitability
- liquidity, cash flows 
- bankruptcies
- fixed assets returns, costs and productivity 

Additional datasets (market, official stats, tax, other):

- equity and bond prices
- employment
- R&D 
- physical output
- foreign ownership
- industrial stats
- tax reciepts
- real-time data
- machine-readable registries
- news clips and good recearch article references

Corporate map:

- GDP / industries / regions boundary values (official stats)
- stock and bond market stats
- other layers

Use cases:

- value a firm (M&A, investment)
- price borrowing to firm (bonds, bank credit)
- find investment/aquisition targets (private equity)
- predict default events (bank loan monitoring, EWS)
- benchmark project or firm performance (stakeholders)
- make a business plan (startups)
- find new clients (business services)
- evaluate policies (eg taxation, subsidies)
- initiate voluntary disclosure and formats (reporting requirements)
- analyse market structure, industries, regional businesses, SMEs  

Chapters:

About authors

1. What do we have covered?
- dataset imperfections
- scope and validation of dataset 
- corporate Russia : map and gaps

2. Large corporations
- who grows?
- who invests?
- how firms finance?
- who defaults?
- typical financial ratios

3. Subsets: SME, industries, regions
- how industries are different?
- how are SMEs are doing?
- how regions are different?

4. Conclusions

Appendix     
- how to reproduce this dataset for your own research    
- artefects: firm names
- excercise: replicate Expert 200 list
- methodolody: what if we had perfect information? can we have perfect information (best practices in disclosure and open stat)?
- access alternatives: BIR, SPARK, СКРИН

Checkpoints:

- [ ] dataset downloadable
- [ ] dataset clean (with tests)
- [ ] can compute firm metrics
- [ ] can make subsets of companies 
- [ ] list hypothesis and findings formulated
- [ ] options for visualisation defined
- [ ] prose written, edited, accepted
- [ ] output format defined and accepted
- [ ] report cited citations 
- [ ] accepting new questions from use cases, acticle replication, controversies, news, etc
- [ ] author credentials written
- [ ] student feedback collected

Collaboration tools:

- slack (?) 
- github, s3 (no dropbox)
- trello board (?)

To add:

- course descriptions
- video Link
- previous teaching
- self-study guides

Not covered:

- РСБУ vs IFRS
- networks, cross ownership, business groups 

Sister projects: - mini-kep
- GIS regional maps - dividend reporting

Links bulk:



Use URIs to identify data. Uniform Resource identifiers (URIs) are a type of web link. They make it easier for your users to point at and draw upon your data. *


Exploratory Data Analysis (EDA):

  • set of approaches / philosophy / some phsycology
  • developed at start computer age, puts reasoning before computing, plotting by hand
  • traditional components: residual analysis, data re-expression, resistant procedures, and data visualization.
  • newer components: clustering, variable screening, and pattern recognition

Exploratory data analysis’ is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as those we believe to be there.

Reading:

  • data is uncertain (measurement error, experiment bias, falsification, data corruption)
  • our reading of data is prejudiced
  • it takes effort to clean data + extract knowledge from data
R: summary(data)
pandas: df.describe()

Examples:

Links:


DataViz:

About

Instructor resources for "Machine-readable corporate financial statements" course

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published