forked from scipy/scipy
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request scipy#19743 from dschult/minmax-1d
ENH: sparse: Add min-max 1d support and tests
- Loading branch information
Showing
3 changed files
with
100 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
"""Test of min-max 1D features of sparse array classes""" | ||
|
||
import pytest | ||
|
||
import numpy as np | ||
|
||
from numpy.testing import assert_equal, assert_array_equal | ||
|
||
from scipy.sparse import coo_array | ||
from scipy.sparse._sputils import isscalarlike | ||
|
||
|
||
def toarray(a): | ||
if isinstance(a, np.ndarray) or isscalarlike(a): | ||
return a | ||
return a.toarray() | ||
|
||
|
||
formats_for_minmax = [coo_array] | ||
|
||
|
||
@pytest.mark.parametrize("spcreator", formats_for_minmax) | ||
class Test_MinMaxMixin1D: | ||
def test_minmax(self, spcreator): | ||
D = np.arange(5) | ||
X = spcreator(D) | ||
|
||
assert_equal(X.min(), 0) | ||
assert_equal(X.max(), 4) | ||
assert_equal((-X).min(), -4) | ||
assert_equal((-X).max(), 0) | ||
|
||
|
||
def test_minmax_axis(self, spcreator): | ||
D = np.arange(50) | ||
X = spcreator(D) | ||
|
||
for axis in [0, -1]: | ||
assert_array_equal( | ||
toarray(X.max(axis=axis)), D.max(axis=axis, keepdims=True) | ||
) | ||
assert_array_equal( | ||
toarray(X.min(axis=axis)), D.min(axis=axis, keepdims=True) | ||
) | ||
for axis in [-2, 1]: | ||
with pytest.raises(ValueError, match="axis out of range"): | ||
X.min(axis=axis) | ||
with pytest.raises(ValueError, match="axis out of range"): | ||
X.max(axis=axis) | ||
|
||
|
||
def test_numpy_minmax(self, spcreator): | ||
dat = np.array([0, 1, 2]) | ||
datsp = spcreator(dat) | ||
assert_array_equal(np.min(datsp), np.min(dat)) | ||
assert_array_equal(np.max(datsp), np.max(dat)) | ||
|
||
|
||
def test_argmax(self, spcreator): | ||
D1 = np.array([-1, 5, 2, 3]) | ||
D2 = np.array([0, 0, -1, -2]) | ||
D3 = np.array([-1, -2, -3, -4]) | ||
D4 = np.array([1, 2, 3, 4]) | ||
D5 = np.array([1, 2, 0, 0]) | ||
|
||
for D in [D1, D2, D3, D4, D5]: | ||
mat = spcreator(D) | ||
|
||
assert_equal(mat.argmax(), np.argmax(D)) | ||
assert_equal(mat.argmin(), np.argmin(D)) | ||
|
||
assert_equal(mat.argmax(axis=0), np.argmax(D, axis=0)) | ||
assert_equal(mat.argmin(axis=0), np.argmin(D, axis=0)) | ||
|
||
D6 = np.empty((0,)) | ||
|
||
for axis in [None, 0]: | ||
mat = spcreator(D6) | ||
with pytest.raises(ValueError, match="to an empty matrix"): | ||
mat.argmin(axis=axis) | ||
with pytest.raises(ValueError, match="to an empty matrix"): | ||
mat.argmax(axis=axis) |