Python code for fast calculation of the overlap reduction function in Pulsar Timing Array produced by a generally anisotropic polarized stochastic gravitational wave background for arbitrary GW polarizations, GW speeds, and pulsar distances. Based on arXiv:2208.12538, arXiv:2209.14834, and arXiv:2312.03383.
Please cite the above papers when using PTAfast, and feel free to reach out to us for any questions or comments. Thanks. - Reggie and Kin
Installation: pip install PTAfast
import numpy as np
from PTAfast.hellingsdowns import HellingsDowns as HD
lMax = 30 # maximum multipole, zeta > 6 degrees
Zta = np.linspace(0, np.pi, lMax + 1) # angle space with 30 divisions
hd = HD(lm = lMax) # default lm = 30 multipoles
hdorf = hd.get_ORF(Zta) # add option return_tv = True for total var
hdave = hdorf['ORF'] # mean
hderr = np.sqrt(hdorf['CV']) # cosmic variance uncertainty
import numpy as np
from PTAfast.scalar import ScalarT as ST
lMax = 30 # maximum multipole, zeta > 6 degrees
Zta = np.linspace(0, np.pi, lMax + 1) # angle space with 30 divisions
NEorf = ST(lm = lMax, v = 0.5, fD = 500) # v = GW speed, fD = distance
orf = NEorf.get_ORF(Zta) # add option return_tv = True for total var
ave = orf['ORF'] # mean
err = np.sqrt(orf['CV']) # cosmic variance uncertainty
Vector GWs---lower-left-Fig-1 of 2007.11009
from matplotlib import pyplot as plt
from PTAfast.vector import Vector
gwb_V_v1 = Vector(lm = 20, v = 1.0, fD = 1000).get_cls()
gwb_V_v2 = Vector(lm = 20, v = 0.9, fD = 1000).get_cls()
gwb_V_v3 = Vector(lm = 20, v = 0.8, fD = 1000).get_cls()
gwb_V_v4 = Vector(lm = 20, v = 0.4, fD = 1000).get_cls()
fig, ax = plt.subplots()
ax.plot(gwb_V_v1[:, 0], gwb_V_v1[:, 1]/gwb_V_v1[:, 1][1], 'ro', markersize = 5.0, label = r'$v = 1.0$')
ax.plot(gwb_V_v2[:, 0], gwb_V_v2[:, 1]/gwb_V_v2[:, 1][1], 'b^', markersize = 5.0, label = r'$v = 0.9$')
ax.plot(gwb_V_v3[:, 0], gwb_V_v3[:, 1]/gwb_V_v3[:, 1][1], 'gs', markersize = 5.0, label = r'$v = 0.8$')
ax.plot(gwb_V_v4[:, 0], gwb_V_v4[:, 1]/gwb_V_v4[:, 1][1], 'm*', markersize = 5.0, label = r'$v = 0.4$')
ax.legend(loc = 'upper right', prop = {'size': 8.0})
ax.set_yscale('log')
ax.set_xlim(0, 20)
ax.set_ylim(1e-7, 1e2)
ax.grid()
import numpy as np
from PTAfast.tensor import Tensor
Zta = np.linspace(0, np.pi, 30 + 1) # 30 divisions
SGWB = Tensor(v = 1.0, lm = 50, fD = 1000) # HD/LO + NLO terms
gab00 = SGWB.get_gab_stokes(l = 0, m = 0, zeta = Zta) # HD curve
gab10 = SGWB.get_gab_stokes(l = 1, m = 0, zeta = Zta) # NLO terms
gab11 = SGWB.get_gab_stokes(l = 1, m = 1, zeta = Zta)
gab20 = SGWB.get_gab_stokes(l = 2, m = 0, zeta = Zta)
# and so on for higher anisotropic and polarized components
See ex1_hdcurve.py
, ex2_halfluminaltensor.py
, etc. In terminal, e.g., python ex1_hdcurve.py
.
Inter-pulsar spatial correlation for nanohertz GWs with pulsars at infinity (Hellings-Downs, red solid, hatches~2-sigma-cosmic variance) and finite distance (~30 parsecs, blue dashed, hatches~2-sigma-cosmic variance). More at https://arxiv.org/abs/2209.14834.
- Varying astrophysical pulsar distances
- Angular control for more efficient calculation
- RSF-PSM subdegree calculations (PTA analogy of pN-NR waveforms for compact binaries)
@misc{ptafast,
author = {Reginald Christian Bernardo and Kin-Wang Ng},
title = {PTAfast: PTA correlations from stochastic gravitational wave background},
year = {2022},
url = {https://github.com/reggiebernardo/PTAfast},
eid = {ascl:2211.001}
}