-
Notifications
You must be signed in to change notification settings - Fork 932
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Separate stats filtering helpers to reuse in page pruning #18034
Open
mhaseeb123
wants to merge
19
commits into
rapidsai:branch-25.04
Choose a base branch
from
mhaseeb123:fea/separate-stats-filter-helpers
base: branch-25.04
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+416
−294
Open
Changes from all commits
Commits
Show all changes
19 commits
Select commit
Hold shift + click to select a range
cec2803
Separate stats filter utilities to reuse for page pruning
mhaseeb123 4c497f5
Remove unused headers and style fix
mhaseeb123 553dcc0
Improve docstrings
mhaseeb123 dca52ba
Move some definitions in hpp file for template instantiation
mhaseeb123 8b20c53
Move definitions to predicate_pushdown.cpp
mhaseeb123 bf30448
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 b215733
Add pragma once
mhaseeb123 e3468d6
Update cpp/src/io/parquet/stats_filter_helpers.hpp
mhaseeb123 2aa9dd4
Update cpp/src/io/parquet/stats_filter_helpers.hpp
mhaseeb123 1c0cff2
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 06a3ad6
Apply suggestions from code review
mhaseeb123 1f0b31f
Apply suggestions from code review
mhaseeb123 33de855
Move definitions back to stats_filter_helpers.hpp
mhaseeb123 c390a24
Minor improvement
mhaseeb123 658f330
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 91bbd88
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 f1462db
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 fc8423d
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 9f62c52
Merge branch 'branch-25.04' into fea/separate-stats-filter-helpers
mhaseeb123 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,14 +14,14 @@ | |
* limitations under the License. | ||
*/ | ||
#include "reader_impl_helpers.hpp" | ||
#include "stats_filter_helpers.hpp" | ||
|
||
#include <cudf/ast/detail/expression_transformer.hpp> | ||
#include <cudf/ast/detail/operators.hpp> | ||
#include <cudf/ast/expressions.hpp> | ||
#include <cudf/column/column_factories.hpp> | ||
#include <cudf/detail/iterator.cuh> | ||
#include <cudf/detail/transform.hpp> | ||
#include <cudf/detail/utilities/integer_utils.hpp> | ||
#include <cudf/detail/utilities/vector_factories.hpp> | ||
#include <cudf/utilities/error.hpp> | ||
#include <cudf/utilities/memory_resource.hpp> | ||
|
@@ -34,97 +34,32 @@ | |
#include <thrust/iterator/counting_iterator.h> | ||
|
||
#include <algorithm> | ||
#include <limits> | ||
#include <numeric> | ||
#include <optional> | ||
#include <unordered_set> | ||
|
||
namespace cudf::io::parquet::detail { | ||
|
||
namespace { | ||
|
||
/** | ||
* @brief Converts statistics in column chunks to 2 device columns - min, max values. | ||
* @brief Converts column chunk statistics to 2 device columns - min, max values. | ||
* | ||
* Each column's number of rows equals the total number of row groups. | ||
* | ||
*/ | ||
struct stats_caster { | ||
struct row_group_stats_caster : public stats_caster_base { | ||
size_type total_row_groups; | ||
std::vector<metadata> const& per_file_metadata; | ||
host_span<std::vector<size_type> const> row_group_indices; | ||
|
||
template <typename ToType, typename FromType> | ||
static ToType targetType(FromType const value) | ||
{ | ||
if constexpr (cudf::is_timestamp<ToType>()) { | ||
return static_cast<ToType>( | ||
typename ToType::duration{static_cast<typename ToType::rep>(value)}); | ||
} else if constexpr (std::is_same_v<ToType, string_view>) { | ||
return ToType{nullptr, 0}; | ||
} else { | ||
return static_cast<ToType>(value); | ||
} | ||
} | ||
|
||
// uses storage type as T | ||
template <typename T, CUDF_ENABLE_IF(cudf::is_dictionary<T>() or cudf::is_nested<T>())> | ||
static T convert(uint8_t const* stats_val, size_t stats_size, Type const type) | ||
{ | ||
CUDF_FAIL("unsupported type for stats casting"); | ||
} | ||
|
||
template <typename T, CUDF_ENABLE_IF(cudf::is_boolean<T>())> | ||
static T convert(uint8_t const* stats_val, size_t stats_size, Type const type) | ||
{ | ||
CUDF_EXPECTS(type == BOOLEAN, "Invalid type and stats combination"); | ||
return targetType<T>(*reinterpret_cast<bool const*>(stats_val)); | ||
} | ||
|
||
// integral but not boolean, and fixed_point, and chrono. | ||
template <typename T, | ||
CUDF_ENABLE_IF((cudf::is_integral<T>() and !cudf::is_boolean<T>()) or | ||
cudf::is_fixed_point<T>() or cudf::is_chrono<T>())> | ||
static T convert(uint8_t const* stats_val, size_t stats_size, Type const type) | ||
{ | ||
switch (type) { | ||
case INT32: return targetType<T>(*reinterpret_cast<int32_t const*>(stats_val)); | ||
case INT64: return targetType<T>(*reinterpret_cast<int64_t const*>(stats_val)); | ||
case INT96: // Deprecated in parquet specification | ||
return targetType<T>(static_cast<__int128_t>(reinterpret_cast<int64_t const*>(stats_val)[0]) | ||
<< 32 | | ||
reinterpret_cast<int32_t const*>(stats_val)[2]); | ||
case BYTE_ARRAY: [[fallthrough]]; | ||
case FIXED_LEN_BYTE_ARRAY: | ||
if (stats_size == sizeof(T)) { | ||
// if type size == length of stats_val. then typecast and return. | ||
if constexpr (cudf::is_chrono<T>()) { | ||
return targetType<T>(*reinterpret_cast<typename T::rep const*>(stats_val)); | ||
} else { | ||
return targetType<T>(*reinterpret_cast<T const*>(stats_val)); | ||
} | ||
} | ||
// unsupported type | ||
default: CUDF_FAIL("Invalid type and stats combination"); | ||
} | ||
} | ||
|
||
template <typename T, CUDF_ENABLE_IF(cudf::is_floating_point<T>())> | ||
static T convert(uint8_t const* stats_val, size_t stats_size, Type const type) | ||
{ | ||
switch (type) { | ||
case FLOAT: return targetType<T>(*reinterpret_cast<float const*>(stats_val)); | ||
case DOUBLE: return targetType<T>(*reinterpret_cast<double const*>(stats_val)); | ||
default: CUDF_FAIL("Invalid type and stats combination"); | ||
} | ||
} | ||
|
||
template <typename T, CUDF_ENABLE_IF(std::is_same_v<T, string_view>)> | ||
static T convert(uint8_t const* stats_val, size_t stats_size, Type const type) | ||
row_group_stats_caster(size_type total_row_groups, | ||
std::vector<metadata> const& per_file_metadata, | ||
host_span<std::vector<size_type> const> row_group_indices) | ||
: total_row_groups{total_row_groups}, | ||
per_file_metadata{per_file_metadata}, | ||
row_group_indices{row_group_indices} | ||
{ | ||
switch (type) { | ||
case BYTE_ARRAY: [[fallthrough]]; | ||
case FIXED_LEN_BYTE_ARRAY: | ||
return string_view(reinterpret_cast<char const*>(stats_val), stats_size); | ||
default: CUDF_FAIL("Invalid type and stats combination"); | ||
} | ||
} | ||
|
||
// Creates device columns from column statistics (min, max) | ||
|
@@ -139,82 +74,8 @@ struct stats_caster { | |
if constexpr (cudf::is_compound<T>() && !std::is_same_v<T, string_view>) { | ||
CUDF_FAIL("Compound types do not have statistics"); | ||
} else { | ||
// Local struct to hold host columns | ||
struct host_column { | ||
// using thrust::host_vector because std::vector<bool> uses bitmap instead of byte per bool. | ||
cudf::detail::host_vector<T> val; | ||
std::vector<bitmask_type> null_mask; | ||
cudf::size_type null_count = 0; | ||
host_column(size_type total_row_groups, rmm::cuda_stream_view stream) | ||
: val{cudf::detail::make_host_vector<T>(total_row_groups, stream)}, | ||
null_mask( | ||
cudf::util::div_rounding_up_safe<size_type>( | ||
cudf::bitmask_allocation_size_bytes(total_row_groups), sizeof(bitmask_type)), | ||
~bitmask_type{0}) | ||
{ | ||
} | ||
|
||
void set_index(size_type index, | ||
std::optional<std::vector<uint8_t>> const& binary_value, | ||
Type const type) | ||
{ | ||
if (binary_value.has_value()) { | ||
val[index] = convert<T>(binary_value.value().data(), binary_value.value().size(), type); | ||
} | ||
if (not binary_value.has_value()) { | ||
clear_bit_unsafe(null_mask.data(), index); | ||
null_count++; | ||
} | ||
} | ||
|
||
static auto make_strings_children(host_span<string_view> host_strings, | ||
rmm::cuda_stream_view stream, | ||
rmm::device_async_resource_ref mr) | ||
{ | ||
auto const total_char_count = std::accumulate( | ||
host_strings.begin(), host_strings.end(), 0, [](auto sum, auto const& str) { | ||
return sum + str.size_bytes(); | ||
}); | ||
auto chars = cudf::detail::make_empty_host_vector<char>(total_char_count, stream); | ||
auto offsets = | ||
cudf::detail::make_empty_host_vector<cudf::size_type>(host_strings.size() + 1, stream); | ||
offsets.push_back(0); | ||
for (auto const& str : host_strings) { | ||
auto tmp = | ||
str.empty() ? std::string_view{} : std::string_view(str.data(), str.size_bytes()); | ||
chars.insert(chars.end(), std::cbegin(tmp), std::cend(tmp)); | ||
offsets.push_back(offsets.back() + tmp.length()); | ||
} | ||
auto d_chars = cudf::detail::make_device_uvector_async(chars, stream, mr); | ||
auto d_offsets = cudf::detail::make_device_uvector_sync(offsets, stream, mr); | ||
return std::tuple{std::move(d_chars), std::move(d_offsets)}; | ||
} | ||
|
||
auto to_device(cudf::data_type dtype, | ||
rmm::cuda_stream_view stream, | ||
rmm::device_async_resource_ref mr) | ||
{ | ||
if constexpr (std::is_same_v<T, string_view>) { | ||
auto [d_chars, d_offsets] = make_strings_children(val, stream, mr); | ||
return cudf::make_strings_column( | ||
val.size(), | ||
std::make_unique<column>(std::move(d_offsets), rmm::device_buffer{}, 0), | ||
d_chars.release(), | ||
null_count, | ||
rmm::device_buffer{ | ||
null_mask.data(), cudf::bitmask_allocation_size_bytes(val.size()), stream, mr}); | ||
} | ||
return std::make_unique<column>( | ||
dtype, | ||
val.size(), | ||
cudf::detail::make_device_uvector_async(val, stream, mr).release(), | ||
rmm::device_buffer{ | ||
null_mask.data(), cudf::bitmask_allocation_size_bytes(val.size()), stream, mr}, | ||
null_count); | ||
} | ||
}; // local struct host_column | ||
host_column min(total_row_groups, stream); | ||
host_column max(total_row_groups, stream); | ||
host_column<T> min(total_row_groups, stream); | ||
host_column<T> max(total_row_groups, stream); | ||
size_type stats_idx = 0; | ||
for (size_t src_idx = 0; src_idx < row_group_indices.size(); ++src_idx) { | ||
for (auto const rg_idx : row_group_indices[src_idx]) { | ||
|
@@ -248,146 +109,6 @@ struct stats_caster { | |
} | ||
}; | ||
|
||
/** | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Moved completely to |
||
* @brief Converts AST expression to StatsAST for comparing with column statistics | ||
* This is used in row group filtering based on predicate. | ||
* statistics min value of a column is referenced by column_index*2 | ||
* statistics max value of a column is referenced by column_index*2+1 | ||
* | ||
*/ | ||
class stats_expression_converter : public ast::detail::expression_transformer { | ||
public: | ||
stats_expression_converter(ast::expression const& expr, size_type const& num_columns) | ||
: _num_columns{num_columns} | ||
{ | ||
expr.accept(*this); | ||
} | ||
|
||
/** | ||
* @copydoc ast::detail::expression_transformer::visit(ast::literal const& ) | ||
*/ | ||
std::reference_wrapper<ast::expression const> visit(ast::literal const& expr) override | ||
{ | ||
return expr; | ||
} | ||
|
||
/** | ||
* @copydoc ast::detail::expression_transformer::visit(ast::column_reference const& ) | ||
*/ | ||
std::reference_wrapper<ast::expression const> visit(ast::column_reference const& expr) override | ||
{ | ||
CUDF_EXPECTS(expr.get_table_source() == ast::table_reference::LEFT, | ||
"Statistics AST supports only left table"); | ||
CUDF_EXPECTS(expr.get_column_index() < _num_columns, | ||
"Column index cannot be more than number of columns in the table"); | ||
return expr; | ||
} | ||
|
||
/** | ||
* @copydoc ast::detail::expression_transformer::visit(ast::column_name_reference const& ) | ||
*/ | ||
std::reference_wrapper<ast::expression const> visit( | ||
ast::column_name_reference const& expr) override | ||
{ | ||
CUDF_FAIL("Column name reference is not supported in statistics AST"); | ||
} | ||
|
||
/** | ||
* @copydoc ast::detail::expression_transformer::visit(ast::operation const& ) | ||
*/ | ||
std::reference_wrapper<ast::expression const> visit(ast::operation const& expr) override | ||
{ | ||
using cudf::ast::ast_operator; | ||
auto const operands = expr.get_operands(); | ||
auto const op = expr.get_operator(); | ||
|
||
if (auto* v = dynamic_cast<ast::column_reference const*>(&operands[0].get())) { | ||
// First operand should be column reference, second should be literal. | ||
CUDF_EXPECTS(cudf::ast::detail::ast_operator_arity(op) == 2, | ||
"Only binary operations are supported on column reference"); | ||
CUDF_EXPECTS(dynamic_cast<ast::literal const*>(&operands[1].get()) != nullptr, | ||
"Second operand of binary operation with column reference must be a literal"); | ||
v->accept(*this); | ||
// Push literal into the ast::tree | ||
auto const& literal = | ||
_stats_expr.push(*dynamic_cast<ast::literal const*>(&operands[1].get())); | ||
auto const col_index = v->get_column_index(); | ||
switch (op) { | ||
/* transform to stats conditions. op(col, literal) | ||
col1 == val --> vmin <= val && vmax >= val | ||
col1 != val --> !(vmin == val && vmax == val) | ||
col1 > val --> vmax > val | ||
col1 < val --> vmin < val | ||
col1 >= val --> vmax >= val | ||
col1 <= val --> vmin <= val | ||
*/ | ||
case ast_operator::EQUAL: { | ||
auto const& vmin = _stats_expr.push(ast::column_reference{col_index * 2}); | ||
auto const& vmax = _stats_expr.push(ast::column_reference{col_index * 2 + 1}); | ||
_stats_expr.push(ast::operation{ | ||
ast::ast_operator::LOGICAL_AND, | ||
_stats_expr.push(ast::operation{ast_operator::GREATER_EQUAL, vmax, literal}), | ||
_stats_expr.push(ast::operation{ast_operator::LESS_EQUAL, vmin, literal})}); | ||
break; | ||
} | ||
case ast_operator::NOT_EQUAL: { | ||
auto const& vmin = _stats_expr.push(ast::column_reference{col_index * 2}); | ||
auto const& vmax = _stats_expr.push(ast::column_reference{col_index * 2 + 1}); | ||
_stats_expr.push(ast::operation{ | ||
ast_operator::LOGICAL_OR, | ||
_stats_expr.push(ast::operation{ast_operator::NOT_EQUAL, vmin, vmax}), | ||
_stats_expr.push(ast::operation{ast_operator::NOT_EQUAL, vmax, literal})}); | ||
break; | ||
} | ||
case ast_operator::LESS: [[fallthrough]]; | ||
case ast_operator::LESS_EQUAL: { | ||
auto const& vmin = _stats_expr.push(ast::column_reference{col_index * 2}); | ||
_stats_expr.push(ast::operation{op, vmin, literal}); | ||
break; | ||
} | ||
case ast_operator::GREATER: [[fallthrough]]; | ||
case ast_operator::GREATER_EQUAL: { | ||
auto const& vmax = _stats_expr.push(ast::column_reference{col_index * 2 + 1}); | ||
_stats_expr.push(ast::operation{op, vmax, literal}); | ||
break; | ||
} | ||
default: CUDF_FAIL("Unsupported operation in Statistics AST"); | ||
}; | ||
} else { | ||
auto new_operands = visit_operands(operands); | ||
if (cudf::ast::detail::ast_operator_arity(op) == 2) { | ||
_stats_expr.push(ast::operation{op, new_operands.front(), new_operands.back()}); | ||
} else if (cudf::ast::detail::ast_operator_arity(op) == 1) { | ||
_stats_expr.push(ast::operation{op, new_operands.front()}); | ||
} | ||
} | ||
return _stats_expr.back(); | ||
} | ||
|
||
/** | ||
* @brief Returns the AST to apply on Column chunk statistics. | ||
* | ||
* @return AST operation expression | ||
*/ | ||
[[nodiscard]] std::reference_wrapper<ast::expression const> get_stats_expr() const | ||
{ | ||
return _stats_expr.back(); | ||
} | ||
|
||
private: | ||
std::vector<std::reference_wrapper<ast::expression const>> visit_operands( | ||
cudf::host_span<std::reference_wrapper<ast::expression const> const> operands) | ||
{ | ||
std::vector<std::reference_wrapper<ast::expression const>> transformed_operands; | ||
for (auto const& operand : operands) { | ||
auto const new_operand = operand.get().accept(*this); | ||
transformed_operands.push_back(new_operand); | ||
} | ||
return transformed_operands; | ||
} | ||
ast::tree _stats_expr; | ||
size_type _num_columns; | ||
}; | ||
} // namespace | ||
|
||
std::optional<std::vector<std::vector<size_type>>> aggregate_reader_metadata::apply_stats_filters( | ||
|
@@ -404,7 +125,7 @@ std::optional<std::vector<std::vector<size_type>>> aggregate_reader_metadata::ap | |
// where min(col[i]) = columns[i*2], max(col[i])=columns[i*2+1] | ||
// For each column, it contains #sources * #column_chunks_per_src rows. | ||
std::vector<std::unique_ptr<column>> columns; | ||
stats_caster const stats_col{ | ||
row_group_stats_caster const stats_col{ | ||
static_cast<size_type>(total_row_groups), per_file_metadata, input_row_group_indices}; | ||
for (size_t col_idx = 0; col_idx < output_dtypes.size(); col_idx++) { | ||
auto const schema_idx = output_column_schemas[col_idx]; | ||
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Moved to
stats_filter_helpers.hpp