Skip to content

Blackhawk drone swarming challenge to draw patterns using 12 drones

Notifications You must be signed in to change notification settings

rajeev-gupta-bashrc/Techshila2023_BlackHawk

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Blackhawk Drone Swarming challenge

simulation_pattern

Checkout the simulation video here

System Requirements :

  1. ubuntu 20.04 Desktop version
  2. ROS noetic

Installation instruction :

Installing Ardupilot and MAVProxy Ubuntu 20.04

Clone ArduPilot

In home directory:

cd ~
sudo apt install git
git clone https://github.com/ArduPilot/ardupilot.git
cd ardupilot

Install dependencies:

cd ardupilot
Tools/environment_install/install-prereqs-ubuntu.sh -y

reload profile

. ~/.profile

Checkout Latest Copter Build

git checkout Copter-4.2
git submodule update --init --recursive

Run SITL (Software In The Loop) once to set params:

cd ~/ardupilot/ArduCopter
sim_vehicle.py -w

Installing Gazebo and ArduPilot Plugin

Overview

Robot simulation is an essential tool in every roboticist's toolbox. A well-designed simulator makes it possible to rapidly test algorithms, design robots, perform regression testing, and train AI system using realistic scenarios. Gazebo offers the ability to accurately and efficiently simulate populations of robots in complex indoor and outdoor environments. At your fingertips is a robust physics engine, high-quality graphics, and convenient programmatic and graphical interfaces. Best of all, Gazebo is free with a vibrant community.

for more infromation on gazebo checkout http://gazebosim.org/

Install Gazebo

Setup your computer to accept software from http://packages.osrfoundation.org:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Reload software list:

sudo apt update

Install Gazebo:

sudo apt-get install gazebo11 libgazebo11-dev

for more detailed instructions for installing gazebo checkout http://gazebosim.org/tutorials?tut=install_ubuntu

Install Gazebo plugin for APM (ArduPilot Master) :

cd ~
git clone https://github.com/khancyr/ardupilot_gazebo.git
cd ardupilot_gazebo

build and install plugin

mkdir build
cd build
cmake ..
make -j4
sudo make install
echo 'source /usr/share/gazebo/setup.sh' >> ~/.bashrc

Set paths for models:

echo 'export GAZEBO_MODEL_PATH=~/ardupilot_gazebo/models' >> ~/.bashrc
. ~/.bashrc

Setting up the workspace

cd
mkdir -p catkin_ws/src
cd catkin_ws/src
git clone https://github.com/ab31mohit/Techshila2023_BlackHawk
cd ..
catkin_make

Environment Setup

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Note

  1. Extract the content of default_params.zip and paste gazebo-drone1.parm, gazebo-drone2.parm ... gazebo-drone12.parm in /home/username/ardupilot/Tools/autotest/default_params directory
  2. Replace /home/username/ardupilot/Tools/autotest/pysim/vehicleinfo.py file with vehicleinfo.py(present in this repository) file
  3. Extract the content of model_drones.zip and paste drone1, drone2 ... drone12 and iris_base in /home/username/.gazebo/models directory

Running the world

In Terminal 1

roslaunch iq_sim blackhawk_line.launch 

In Terminal 2

roscd iq_sim
bash ./blackhawk.sh

Open a new Terminal window (ctrl + alt + T)

python master.py    

Open a new tab

bash ./pattern.sh   

World File

world

References

  1. https://github.com/Intelligent-Quads/iq_tutorials
  2. https://youtu.be/r15Tc6e2K7Y
  3. https://youtu.be/UWsya46ZG4M
  4. https://youtu.be/kcCL0w4NbIc

About

Blackhawk drone swarming challenge to draw patterns using 12 drones

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.3%
  • CMake 5.7%
  • Shell 1.0%