forked from anagabandi/nn_dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
831 lines (685 loc) · 39.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#imports
import numpy as np
import numpy.random as npr
import tensorflow as tf
import time
import matplotlib.pyplot as plt
import pickle
import copy
import os
import sys
from six.moves import cPickle
from rllab.envs.normalized_env import normalize
import yaml
import argparse
import json
#my imports
from policy_random import Policy_Random
from trajectories import make_trajectory
from trajectories import get_trajfollow_params
from data_manipulation import generate_training_data_inputs
from data_manipulation import generate_training_data_outputs
from data_manipulation import from_observation_to_usablestate
from data_manipulation import get_indices
from helper_funcs import perform_rollouts
from helper_funcs import create_env
from helper_funcs import visualize_rendering
from helper_funcs import add_noise
from dynamics_model import Dyn_Model
from mpc_controller import MPCController
def main():
#################################################
############ commandline arguments ##############
#################################################
parser = argparse.ArgumentParser()
parser.add_argument('--yaml_file', type=str, default='ant_forward')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--run_num', type=int, default=0)
parser.add_argument('--use_existing_training_data', action="store_true", dest='use_existing_training_data', default=False)
parser.add_argument('--use_existing_dynamics_model', action="store_true", dest='use_existing_dynamics_model', default=False)
parser.add_argument('--desired_traj_type', type=str, default='straight') #straight, left_turn, right_turn, u_turn, backward, forward_backward
parser.add_argument('--num_rollouts_save_for_mf', type=int, default=60)
parser.add_argument('--might_render', action="store_true", dest='might_render', default=False)
parser.add_argument('--visualize_MPC_rollout', action="store_true", dest='visualize_MPC_rollout', default=False)
parser.add_argument('--perform_forwardsim_for_vis', action="store_true", dest='perform_forwardsim_for_vis', default=False)
parser.add_argument('--print_minimal', action="store_true", dest='print_minimal', default=False)
args = parser.parse_args()
########################################
######### params from yaml file ########
########################################
#load in parameters from specified file
yaml_path = os.path.abspath('yaml_files/'+args.yaml_file+'.yaml')
assert(os.path.exists(yaml_path))
with open(yaml_path, 'r') as f:
params = yaml.load(f)
#save params from specified file
which_agent = params['which_agent']
follow_trajectories = params['follow_trajectories']
#data collection
use_threading = params['data_collection']['use_threading']
num_rollouts_train = params['data_collection']['num_rollouts_train']
num_rollouts_val = params['data_collection']['num_rollouts_val']
#dynamics model
num_fc_layers = params['dyn_model']['num_fc_layers']
depth_fc_layers = params['dyn_model']['depth_fc_layers']
batchsize = params['dyn_model']['batchsize']
lr = params['dyn_model']['lr']
nEpoch = params['dyn_model']['nEpoch']
fraction_use_new = params['dyn_model']['fraction_use_new']
#controller
horizon = params['controller']['horizon']
num_control_samples = params['controller']['num_control_samples']
if(which_agent==1):
if(args.desired_traj_type=='straight'):
num_control_samples=3000
#aggregation
num_aggregation_iters = params['aggregation']['num_aggregation_iters']
num_trajectories_for_aggregation = params['aggregation']['num_trajectories_for_aggregation']
rollouts_forTraining = params['aggregation']['rollouts_forTraining']
#noise
make_aggregated_dataset_noisy = params['noise']['make_aggregated_dataset_noisy']
make_training_dataset_noisy = params['noise']['make_training_dataset_noisy']
noise_actions_during_MPC_rollouts = params['noise']['noise_actions_during_MPC_rollouts']
#steps
dt_steps = params['steps']['dt_steps']
steps_per_episode = params['steps']['steps_per_episode']
steps_per_rollout_train = params['steps']['steps_per_rollout_train']
steps_per_rollout_val = params['steps']['steps_per_rollout_val']
#saving
min_rew_for_saving = params['saving']['min_rew_for_saving']
#generic
visualize_True = params['generic']['visualize_True']
visualize_False = params['generic']['visualize_False']
#from args
print_minimal= args.print_minimal
########################################
### make directories for saving data ###
########################################
save_dir = 'run_'+ str(args.run_num)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
os.makedirs(save_dir+'/losses')
os.makedirs(save_dir+'/models')
os.makedirs(save_dir+'/saved_forwardsim')
os.makedirs(save_dir+'/saved_trajfollow')
os.makedirs(save_dir+'/training_data')
########################################
############## set vars ################
########################################
#set seeds
npr.seed(args.seed)
tf.set_random_seed(args.seed)
#data collection, either with or without multi-threading
if(use_threading):
from collect_samples_threaded import CollectSamples
else:
from collect_samples import CollectSamples
#more vars
x_index, y_index, z_index, yaw_index, joint1_index, joint2_index, frontleg_index, frontshin_index, frontfoot_index, xvel_index, orientation_index = get_indices(which_agent)
tf_datatype = tf.float64
noiseToSignal = 0.01
# n is noisy, c is clean... 1st letter is what action's executed and 2nd letter is what action's aggregated
actions_ag='nc'
#################################################
######## save param values to a file ############
#################################################
param_dict={}
param_dict['which_agent']= which_agent
param_dict['use_existing_training_data']= str(args.use_existing_training_data)
param_dict['desired_traj_type']= args.desired_traj_type
param_dict['visualize_MPC_rollout']= str(args.visualize_MPC_rollout)
param_dict['num_rollouts_save_for_mf']= args.num_rollouts_save_for_mf
param_dict['seed']= args.seed
param_dict['follow_trajectories']= str(follow_trajectories)
param_dict['use_threading']= str(use_threading)
param_dict['num_rollouts_train']= num_rollouts_train
param_dict['num_fc_layers']= num_fc_layers
param_dict['depth_fc_layers']= depth_fc_layers
param_dict['batchsize']= batchsize
param_dict['lr']= lr
param_dict['nEpoch']= nEpoch
param_dict['fraction_use_new']= fraction_use_new
param_dict['horizon']= horizon
param_dict['num_control_samples']= num_control_samples
param_dict['num_aggregation_iters']= num_aggregation_iters
param_dict['num_trajectories_for_aggregation']= num_trajectories_for_aggregation
param_dict['rollouts_forTraining']= rollouts_forTraining
param_dict['make_aggregated_dataset_noisy']= str(make_aggregated_dataset_noisy)
param_dict['make_training_dataset_noisy']= str(make_training_dataset_noisy)
param_dict['noise_actions_during_MPC_rollouts']= str(noise_actions_during_MPC_rollouts)
param_dict['dt_steps']= dt_steps
param_dict['steps_per_episode']= steps_per_episode
param_dict['steps_per_rollout_train']= steps_per_rollout_train
param_dict['steps_per_rollout_val']= steps_per_rollout_val
param_dict['min_rew_for_saving']= min_rew_for_saving
param_dict['x_index']= x_index
param_dict['y_index']= y_index
param_dict['tf_datatype']= str(tf_datatype)
param_dict['noiseToSignal']= noiseToSignal
with open(save_dir+'/params.pkl', 'wb') as f:
pickle.dump(param_dict, f, pickle.HIGHEST_PROTOCOL)
with open(save_dir+'/params.txt', 'w') as f:
f.write(json.dumps(param_dict))
#################################################
### initialize the experiment
#################################################
if(not(print_minimal)):
print("\n#####################################")
print("Initializing environment")
print("#####################################\n")
#create env
env, dt_from_xml= create_env(which_agent)
#create random policy for data collection
random_policy = Policy_Random(env)
#################################################
### set GPU options for TF
#################################################
gpu_device = 0
gpu_frac = 0.3
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_device)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_frac)
config = tf.ConfigProto(gpu_options=gpu_options,
log_device_placement=False,
allow_soft_placement=True,
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=1)
with tf.Session(config=config) as sess:
#################################################
### deal with data
#################################################
if(args.use_existing_training_data):
if(not(print_minimal)):
print("\n#####################################")
print("Retrieving training data & policy from saved files")
print("#####################################\n")
dataX= np.load(save_dir + '/training_data/dataX.npy') # input1: state
dataY= np.load(save_dir + '/training_data/dataY.npy') # input2: control
dataZ= np.load(save_dir + '/training_data/dataZ.npy') # output: nextstate-state
states_val= np.load(save_dir + '/training_data/states_val.npy')
controls_val= np.load(save_dir + '/training_data/controls_val.npy')
forwardsim_x_true= np.load(save_dir + '/training_data/forwardsim_x_true.npy')
forwardsim_y= np.load(save_dir + '/training_data/forwardsim_y.npy')
else:
if(not(print_minimal)):
print("\n#####################################")
print("Performing rollouts to collect training data")
print("#####################################\n")
#perform rollouts
states, controls, _, _ = perform_rollouts(random_policy, num_rollouts_train, steps_per_rollout_train, visualize_False,
CollectSamples, env, which_agent, dt_steps, dt_from_xml, follow_trajectories)
if(not(print_minimal)):
print("\n#####################################")
print("Performing rollouts to collect validation data")
print("#####################################\n")
start_validation_rollouts = time.time()
states_val, controls_val, _, _ = perform_rollouts(random_policy, num_rollouts_val, steps_per_rollout_val, visualize_False,
CollectSamples, env, which_agent, dt_steps, dt_from_xml, follow_trajectories)
if(not(print_minimal)):
print("\n#####################################")
print("Convert from env observations to NN 'states' ")
print("#####################################\n")
#training
states = from_observation_to_usablestate(states, which_agent, False)
#validation
states_val = from_observation_to_usablestate(states_val, which_agent, False)
states_val = np.array(states_val)
if(not(print_minimal)):
print("\n#####################################")
print("Data formatting: create inputs and labels for NN ")
print("#####################################\n")
dataX , dataY = generate_training_data_inputs(states, controls)
dataZ = generate_training_data_outputs(states, which_agent)
if(not(print_minimal)):
print("\n#####################################")
print("Add noise")
print("#####################################\n")
#add a little dynamics noise (next state is not perfectly accurate, given correct state and action)
if(make_training_dataset_noisy):
dataX = add_noise(dataX, noiseToSignal)
dataZ = add_noise(dataZ, noiseToSignal)
if(not(print_minimal)):
print("\n#####################################")
print("Perform rollout & save for forward sim")
print("#####################################\n")
states_forwardsim_orig, controls_forwardsim, _,_ = perform_rollouts(random_policy, 1, 100,
visualize_False, CollectSamples,
env, which_agent, dt_steps,
dt_from_xml, follow_trajectories)
states_forwardsim = np.copy(from_observation_to_usablestate(states_forwardsim_orig, which_agent, False))
forwardsim_x_true, forwardsim_y = generate_training_data_inputs(states_forwardsim, controls_forwardsim)
if(not(print_minimal)):
print("\n#####################################")
print("Saving data")
print("#####################################\n")
np.save(save_dir + '/training_data/dataX.npy', dataX)
np.save(save_dir + '/training_data/dataY.npy', dataY)
np.save(save_dir + '/training_data/dataZ.npy', dataZ)
np.save(save_dir + '/training_data/states_val.npy', states_val)
np.save(save_dir + '/training_data/controls_val.npy', controls_val)
np.save(save_dir + '/training_data/forwardsim_x_true.npy', forwardsim_x_true)
np.save(save_dir + '/training_data/forwardsim_y.npy', forwardsim_y)
if(not(print_minimal)):
print("Done getting data.")
print("dataX dim: ", dataX.shape)
#################################################
### init vars
#################################################
counter_agg_iters=0
training_loss_list=[]
forwardsim_score_list=[]
old_loss_list=[]
new_loss_list=[]
errors_1_per_agg=[]
errors_5_per_agg=[]
errors_10_per_agg=[]
errors_50_per_agg=[]
errors_100_per_agg=[]
list_avg_rew=[]
list_num_datapoints=[]
dataX_new = np.zeros((0,dataX.shape[1]))
dataY_new = np.zeros((0,dataY.shape[1]))
dataZ_new = np.zeros((0,dataZ.shape[1]))
#################################################
### preprocess the old training dataset
#################################################
if(not(print_minimal)):
print("\n#####################################")
print("Preprocessing 'old' training data")
print("#####################################\n")
#every component (i.e. x position) should become mean 0, std 1
mean_x = np.mean(dataX, axis = 0)
dataX = dataX - mean_x
std_x = np.std(dataX, axis = 0)
dataX = np.nan_to_num(dataX/std_x)
mean_y = np.mean(dataY, axis = 0)
dataY = dataY - mean_y
std_y = np.std(dataY, axis = 0)
dataY = np.nan_to_num(dataY/std_y)
mean_z = np.mean(dataZ, axis = 0)
dataZ = dataZ - mean_z
std_z = np.std(dataZ, axis = 0)
dataZ = np.nan_to_num(dataZ/std_z)
## concatenate state and action, to be used for training dynamics
inputs = np.concatenate((dataX, dataY), axis=1)
outputs = np.copy(dataZ)
#doing a render here somehow allows it to not produce an error later
might_render= False
if(args.visualize_MPC_rollout or args.might_render):
might_render=True
if(might_render):
new_env, _ = create_env(which_agent)
new_env.render()
##############################################
########## THE AGGREGATION LOOP ##############
##############################################
#dimensions
assert inputs.shape[0] == outputs.shape[0]
inputSize = inputs.shape[1]
outputSize = outputs.shape[1]
#initialize dynamics model
dyn_model = Dyn_Model(inputSize, outputSize, sess, lr, batchsize, which_agent, x_index, y_index, num_fc_layers,
depth_fc_layers, mean_x, mean_y, mean_z, std_x, std_y, std_z, tf_datatype, print_minimal)
#create mpc controller
mpc_controller = MPCController(env, dyn_model, horizon, which_agent, steps_per_episode, dt_steps, num_control_samples,
mean_x, mean_y, mean_z, std_x, std_y, std_z, actions_ag, print_minimal, x_index, y_index,
z_index, yaw_index, joint1_index, joint2_index, frontleg_index, frontshin_index,
frontfoot_index, xvel_index, orientation_index)
#randomly initialize all vars
sess.run(tf.global_variables_initializer())
while(counter_agg_iters<num_aggregation_iters):
#make saver
if(counter_agg_iters==0):
saver = tf.train.Saver(max_to_keep=0)
print("\n#####################################")
print("AGGREGATION ITERATION ", counter_agg_iters)
print("#####################################\n")
#save the aggregated dataset used to train during this agg iteration
np.save(save_dir + '/training_data/dataX_new_iter'+ str(counter_agg_iters) + '.npy', dataX_new)
np.save(save_dir + '/training_data/dataY_new_iter'+ str(counter_agg_iters) + '.npy', dataY_new)
np.save(save_dir + '/training_data/dataZ_new_iter'+ str(counter_agg_iters) + '.npy', dataZ_new)
starting_big_loop = time.time()
if(not(print_minimal)):
print("\n#####################################")
print("Preprocessing 'new' training data")
print("#####################################\n")
dataX_new_preprocessed = np.nan_to_num((dataX_new - mean_x)/std_x)
dataY_new_preprocessed = np.nan_to_num((dataY_new - mean_y)/std_y)
dataZ_new_preprocessed = np.nan_to_num((dataZ_new - mean_z)/std_z)
## concatenate state and action, to be used for training dynamics
inputs_new = np.concatenate((dataX_new_preprocessed, dataY_new_preprocessed), axis=1)
outputs_new = np.copy(dataZ_new_preprocessed)
if(not(print_minimal)):
print("\n#####################################")
print("Training the dynamics model")
print("#####################################\n")
#train model or restore model
if(args.use_existing_dynamics_model):
restore_path = save_dir+ '/models/finalModel.ckpt'
saver.restore(sess, restore_path)
print("Model restored from ", restore_path)
training_loss=0
old_loss=0
new_loss=0
else:
training_loss, old_loss, new_loss = dyn_model.train(inputs, outputs, inputs_new, outputs_new,
nEpoch, save_dir, fraction_use_new)
#how good is model on training data
training_loss_list.append(training_loss)
#how good is model on old dataset
old_loss_list.append(old_loss)
#how good is model on new dataset
new_loss_list.append(new_loss)
print("\nTraining loss: ", training_loss)
#####################################
## Saving model
#####################################
save_path = saver.save(sess, save_dir+ '/models/model_aggIter' +str(counter_agg_iters)+ '.ckpt')
save_path = saver.save(sess, save_dir+ '/models/finalModel.ckpt')
if(not(print_minimal)):
print("Model saved at ", save_path)
#####################################
## calculate multi-step validation metrics
#####################################
if(not(print_minimal)):
print("\n#####################################")
print("Calculating Validation Metrics")
print("#####################################\n")
#####################################
## init vars for multi-step validation metrics
#####################################
validation_inputs_states = []
labels_1step = []
labels_5step = []
labels_10step = []
labels_50step = []
labels_100step = []
controls_100step=[]
#####################################
## make the arrays to pass into forward sim
#####################################
for i in range(num_rollouts_val):
length_curr_rollout = states_val[i].shape[0]
if(length_curr_rollout>100):
#########################
#### STATE INPUTS TO NN
#########################
## take all except the last 100 pts from each rollout
validation_inputs_states.append(states_val[i][0:length_curr_rollout-100])
#########################
#### CONTROL INPUTS TO NN
#########################
#100 step controls
list_100 = []
for j in range(100):
list_100.append(controls_val[i][0+j:length_curr_rollout-100+j])
##for states 0:x, first apply acs 0:x, then apply acs 1:x+1, then apply acs 2:x+2, etc...
list_100=np.array(list_100) #100xstepsx2
list_100= np.swapaxes(list_100,0,1) #stepsx100x2
controls_100step.append(list_100)
#########################
#### STATE LABELS- compare these to the outputs of NN (forward sim)
#########################
labels_1step.append(states_val[i][0+1:length_curr_rollout-100+1])
labels_5step.append(states_val[i][0+5:length_curr_rollout-100+5])
labels_10step.append(states_val[i][0+10:length_curr_rollout-100+10])
labels_50step.append(states_val[i][0+50:length_curr_rollout-100+50])
labels_100step.append(states_val[i][0+100:length_curr_rollout-100+100])
validation_inputs_states = np.concatenate(validation_inputs_states)
controls_100step = np.concatenate(controls_100step)
labels_1step = np.concatenate(labels_1step)
labels_5step = np.concatenate(labels_5step)
labels_10step = np.concatenate(labels_10step)
labels_50step = np.concatenate(labels_50step)
labels_100step = np.concatenate(labels_100step)
#####################################
## pass into forward sim, to make predictions
#####################################
many_in_parallel = True
predicted_100step = dyn_model.do_forward_sim(validation_inputs_states, controls_100step,
many_in_parallel, env, which_agent)
#####################################
## Calculate validation metrics (mse loss between predicted and true)
#####################################
array_meanx = np.tile(np.expand_dims(mean_x, axis=0),(labels_1step.shape[0],1))
array_stdx = np.tile(np.expand_dims(std_x, axis=0),(labels_1step.shape[0],1))
error_1step = np.mean(np.square(np.nan_to_num(np.divide(predicted_100step[1]-array_meanx,array_stdx))
-np.nan_to_num(np.divide(labels_1step-array_meanx,array_stdx))))
error_5step = np.mean(np.square(np.nan_to_num(np.divide(predicted_100step[5]-array_meanx,array_stdx))
-np.nan_to_num(np.divide(labels_5step-array_meanx,array_stdx))))
error_10step = np.mean(np.square(np.nan_to_num(np.divide(predicted_100step[10]-array_meanx,array_stdx))
-np.nan_to_num(np.divide(labels_10step-array_meanx,array_stdx))))
error_50step = np.mean(np.square(np.nan_to_num(np.divide(predicted_100step[50]-array_meanx,array_stdx))
-np.nan_to_num(np.divide(labels_50step-array_meanx,array_stdx))))
error_100step = np.mean(np.square(np.nan_to_num(np.divide(predicted_100step[100]-array_meanx,array_stdx))
-np.nan_to_num(np.divide(labels_100step-array_meanx,array_stdx))))
print("Multistep error values: ", error_1step, error_5step, error_10step, error_50step, error_100step,"\n")
errors_1_per_agg.append(error_1step)
errors_5_per_agg.append(error_5step)
errors_10_per_agg.append(error_10step)
errors_50_per_agg.append(error_50step)
errors_100_per_agg.append(error_100step)
#####################################
## Perform 1 forward simulation, for visualization purposes (compare predicted traj vs true traj)
#####################################
if(args.perform_forwardsim_for_vis):
if(not(print_minimal)):
print("\n#####################################")
print("Performing a forward sim of the learned model. using pre-saved dataset. just for visualization")
print("#####################################\n")
#for a given set of controls,
#compare sim traj vs. learned model's traj
#(dont expect this to be good cuz error accum)
many_in_parallel = False
forwardsim_x_pred = dyn_model.do_forward_sim(forwardsim_x_true, forwardsim_y, many_in_parallel, env, which_agent)
forwardsim_x_pred = np.array(forwardsim_x_pred)
# save results of forward sim
np.save(save_dir + '/saved_forwardsim/forwardsim_states_true_'+str(counter_agg_iters)+'.npy', forwardsim_x_true)
np.save(save_dir + '/saved_forwardsim/forwardsim_states_pred_'+str(counter_agg_iters)+'.npy', forwardsim_x_pred)
#####################################
######## EXECUTE CONTROLLER #########
#####################################
if(not(print_minimal)):
print("##############################################")
print("#### Execute the controller to follow desired trajectories")
print("##############################################\n")
###################################################################
### Try to follow trajectory... collect rollouts
###################################################################
#init vars
list_rewards=[]
starting_states=[]
selected_multiple_u = []
resulting_multiple_x = []
#get parameters for trajectory following
horiz_penalty_factor, forward_encouragement_factor, heading_penalty_factor, desired_snake_headingInit = get_trajfollow_params(which_agent, args.desired_traj_type)
if(follow_trajectories==False):
desired_snake_headingInit=0
for rollout_num in range(num_trajectories_for_aggregation):
if(not(print_minimal)):
print("\nPerforming MPC rollout #", rollout_num)
#reset env and set the desired traj
if(which_agent==2):
starting_observation, starting_state = env.reset(evaluating=True, returnStartState=True, isSwimmer=True)
else:
starting_observation, starting_state = env.reset(evaluating=True, returnStartState=True)
#start swimmer heading in correct direction
if(which_agent==2):
starting_state[2] = desired_snake_headingInit
starting_observation, starting_state = env.reset(starting_state, returnStartState=True)
#desired trajectory to follow
starting_observation_NNinput = from_observation_to_usablestate(starting_observation, which_agent, True)
desired_x = make_trajectory(args.desired_traj_type, starting_observation_NNinput, x_index, y_index, which_agent)
#perform 1 MPC rollout
#depending on follow_trajectories, either move forward or follow desired_traj_type
if(noise_actions_during_MPC_rollouts):
curr_noise_amount = 0.005
else:
curr_noise_amount=0
resulting_x, selected_u, ep_rew, _ = mpc_controller.perform_rollout(starting_state, starting_observation,
starting_observation_NNinput, desired_x,
follow_trajectories, horiz_penalty_factor,
forward_encouragement_factor, heading_penalty_factor,
noise_actions_during_MPC_rollouts, curr_noise_amount)
#save info from MPC rollout
list_rewards.append(ep_rew)
selected_multiple_u.append(selected_u)
resulting_multiple_x.append(resulting_x)
starting_states.append(starting_state)
if(args.visualize_MPC_rollout):
input("\n\nPAUSE BEFORE VISUALIZATION... Press Enter to continue...")
for vis_index in range(num_trajectories_for_aggregation):
visualize_rendering(starting_states[vis_index], selected_multiple_u[vis_index], env, dt_steps, dt_from_xml, which_agent)
#bookkeeping
avg_rew = np.mean(np.array(list_rewards))
std_rew = np.std(np.array(list_rewards))
print("############# Avg reward for ", num_trajectories_for_aggregation, " MPC rollouts: ", avg_rew)
print("############# Std reward for ", num_trajectories_for_aggregation, " MPC rollouts: ", std_rew)
print("############# Rewards for the ", num_trajectories_for_aggregation, " MPC rollouts: ", list_rewards)
#save pts_used_so_far + performance achieved by those points
list_num_datapoints.append(dataX.shape[0]+dataX_new.shape[0])
list_avg_rew.append(avg_rew)
##############################
### Aggregate data
##############################
full_states_list = []
full_controls_list = []
if(counter_agg_iters<(num_aggregation_iters-1)):
##############################
### aggregate some rollouts into training set
##############################
x_array = np.array(resulting_multiple_x)[0:(rollouts_forTraining+1)]
if(which_agent==6 or which_agent==1):
u_array = np.array(selected_multiple_u)[0:(rollouts_forTraining+1)]
else:
u_array = np.squeeze(np.array(selected_multiple_u), axis=2)[0:(rollouts_forTraining+1)]
for i in range(rollouts_forTraining):
if(which_agent==6 or which_agent==1):
x= np.array(x_array[i])
u= np.squeeze(u_array[i], axis=1)
else:
x= x_array[i] #[N+1, NN_inp]
u= u_array[i] #[N, actionSize]
newDataX= np.copy(x[0:-1, :])
newDataY= np.copy(u)
newDataZ= np.copy(x[1:, :]-x[0:-1, :])
# make this new data a bit noisy before adding it into the dataset
if(make_aggregated_dataset_noisy):
newDataX = add_noise(newDataX, noiseToSignal)
newDataZ = add_noise(newDataZ, noiseToSignal)
# the actual aggregation
dataX_new = np.concatenate((dataX_new, newDataX))
dataY_new = np.concatenate((dataY_new, newDataY))
dataZ_new = np.concatenate((dataZ_new, newDataZ))
##############################
### aggregate the rest of the rollouts into validation set
##############################
x_array = np.array(resulting_multiple_x)[rollouts_forTraining:len(resulting_multiple_x)]
# ^ dim: [rollouts_forValidation x stepsPerEpisode+1 x stateSize]
if(which_agent==6 or which_agent==1):
u_array = np.array(selected_multiple_u)[rollouts_forTraining:len(resulting_multiple_x)]
else:
u_array = np.squeeze(np.array(selected_multiple_u), axis=2)[rollouts_forTraining:len(resulting_multiple_x)]
# rollouts_forValidation x stepsPerEpisode x acSize
full_states_list = []
full_controls_list = []
for i in range(states_val.shape[0]):
full_states_list.append(states_val[i])
full_controls_list.append(controls_val[i])
for i in range(x_array.shape[0]):
x = np.array(x_array[i])
full_states_list.append(x[0:-1,:])
full_controls_list.append(np.squeeze(u_array[i]))
states_val = np.array(full_states_list)
controls_val = np.array(full_controls_list)
#save trajectory following stuff (aka trajectory taken) for plotting
np.save(save_dir + '/saved_trajfollow/startingstate_iter' + str(counter_agg_iters) +'.npy', starting_state)
np.save(save_dir + '/saved_trajfollow/control_iter' + str(counter_agg_iters) +'.npy', selected_u)
np.save(save_dir + '/saved_trajfollow/true_iter' + str(counter_agg_iters) +'.npy', desired_x)
np.save(save_dir + '/saved_trajfollow/pred_iter' + str(counter_agg_iters) +'.npy', np.array(resulting_multiple_x))
#bookkeeping
if(not(print_minimal)):
print("\n\nDONE WITH BIG LOOP ITERATION ", counter_agg_iters ,"\n\n")
print("training dataset size: ", dataX.shape[0] + dataX_new.shape[0])
if(len(full_states_list)>0):
print("validation dataset size: ", np.concatenate(full_states_list).shape[0])
print("Time taken: {:0.2f} s\n\n".format(time.time()-starting_big_loop))
counter_agg_iters= counter_agg_iters+1
#save things after every agg iteration
np.save(save_dir + '/errors_1_per_agg.npy', errors_1_per_agg)
np.save(save_dir + '/errors_5_per_agg.npy', errors_5_per_agg)
np.save(save_dir + '/errors_10_per_agg.npy', errors_10_per_agg)
np.save(save_dir + '/errors_50_per_agg.npy', errors_50_per_agg)
np.save(save_dir + '/errors_100_per_agg.npy', errors_100_per_agg)
np.save(save_dir + '/avg_rollout_rewards_per_agg.npy', list_avg_rew)
np.save(save_dir + '/losses/list_training_loss.npy', training_loss_list)
np.save(save_dir + '/losses/list_old_loss.npy', old_loss_list)
np.save(save_dir + '/losses/list_new_loss.npy', new_loss_list)
##############################
### perform a bunch of MPC rollouts to save for later mbmf TRPO usage
##############################
all_rollouts_to_save = []
if(args.num_rollouts_save_for_mf>0):
print("##############################################")
print("#### Performing MPC rollouts to save for later mbmf TRPO usage")
print("##############################################\n")
#init vars
list_rewards=[]
starting_states=[]
num_saved = 0
rollout_num = 0
while(num_saved < args.num_rollouts_save_for_mf):
if(not(print_minimal)):
print("\nSo far, saved ", num_saved, " rollouts")
print("Currently, on rollout #", rollout_num)
#reset env before performing rollout
if(which_agent==2):
starting_observation, starting_state = env.reset(evaluating=True, returnStartState=True, isSwimmer=True)
else:
starting_observation, starting_state = env.reset(evaluating=True, returnStartState=True)
if(which_agent==2):
starting_state[2] = desired_snake_headingInit
starting_observation, starting_state = env.reset(starting_state, returnStartState=True)
starting_observation_NNinput = from_observation_to_usablestate(starting_observation, which_agent, True)
#perform 1 MPC rollout
startrollout = time.time()
curr_noise_amount=0
_, _, ep_rew, rollout_saved = mpc_controller.perform_rollout(starting_state, starting_observation,
starting_observation_NNinput, desired_x,
follow_trajectories, horiz_penalty_factor,
forward_encouragement_factor, heading_penalty_factor,
noise_actions_during_MPC_rollouts, curr_noise_amount)
if(not(print_minimal)):
print("Time taken for a single rollout: {:0.2f} s\n\n".format(time.time()-startrollout))
#save rollouts
rollout_num += 1
if(ep_rew>min_rew_for_saving):
list_rewards.append(ep_rew)
all_rollouts_to_save.append(rollout_saved)
starting_states.append(starting_state)
num_saved += 1
#bookkeeping
if(len(list_rewards)>0):
#get avg rew
avg_rew = np.mean(np.array(list_rewards))
print("############# Avg over all selected runs: ", avg_rew)
print("############# Rewards of all selected runs: ", list_rewards)
#save the rollouts for later MBMF usage
pathname_savedMPCrollouts = save_dir + '/savedRollouts_avg'+ str(int(avg_rew)) +'.save'
pathname2_savedMPCrollouts = save_dir + '/savedRollouts.save'
f = open(pathname_savedMPCrollouts, 'wb')
cPickle.dump(all_rollouts_to_save, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
f = open(pathname2_savedMPCrollouts, 'wb')
cPickle.dump(all_rollouts_to_save, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
#save the starting states of these rollouts, in case want to visualize them later
f = open(save_dir + '/savedRollouts_startingStates.save', 'wb')
cPickle.dump(starting_states, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
print("Saved MPC rollouts for later mbmf TRPO usage.")
np.save(save_dir + '/datapoints_MB.npy', list_num_datapoints)
np.save(save_dir + '/performance_MB.npy', list_avg_rew)
print("ALL DONE.")
return
if __name__ == '__main__':
main()