This repository has been archived by the owner on Jun 15, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
Training models
quantumjot edited this page Apr 16, 2019
·
3 revisions
Training data should be organised as follows:
set1/
phase/
0001_phase.tif
0002_phase.tif
...
gfp/
rfp/
...
label/
0001_mask.tif
0002_mask.tif
...
weights/
0001_weights.tif
0002_weights.tif
...
set2/
Use the following scripts to generate weigthmaps and TFRecord files...
$ python weightmap.py
$ python generate_records.py
Per-pixel weighting can be applied during training to emphasise certain regions of images important for accurate segmentation. Below is an example of higher weighting in regions with very few pixels separating objects:
Object labels and pre-calculated weight maps
Train a classifier
module = classifier
func = SERVER_train_classifier
device = GPU
params = {'path':'/media/arl/DataII/Data/competition/training/CNN_Training_Anna/png',
'training_data': 'cell_cycle_CNN.tfrecord',
'name':'CNN_competition',
'num_inputs':2,
'num_epochs':1000,
'batch_size':32}
Run a classifier prediction:
module = classifier
func = SERVER_classify_from_HDF
device = GPU
params = {'path': '/media/arl/DataII/Data/competition/colony',
'image_dict': {'brightfield': 'brightfield/BF_pos11.tif',
'gfp':'fluorescence/GFP_pos12.tif',
'rfp':'fluorescence/RFP_pos11.tif'},
'name':'CNN_competition'}
Train a UNet
module = unet2d
func = SERVER_train_unet2d
device = GPU
params = {'path': '/media/arl/DataII/Data/competition/training',
'training_data': 'train_competition_UNet_w0-30.00_sigma-3.00.tfrecord',
'name':'UNet2D_test',
'shape':(1200,1600),
'num_inputs':1,
'num_outputs':2,
'num_epochs':1000,
'batch_size':1,
'warm_start':False,
'bridge':'concat'}
Run a UNet prediction:
module = unet2d
func = SERVER_predict_unet2d
device = GPU
params = {'path': '/media/arl/DataII/Data/competition/colony',
'image_dict': {'gfp':'fluorescence/GFP_pos12.tif',
'rfp':'fluorescence/RFP_pos11.tif'},
'name':'UNet2D_competition',
'shape':(1200,1600),
'num_inputs':2,
'num_outputs':3}
Track cells
Lowe lab | UCL | lowe.cs.ucl.ac.uk