Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RGD optimization method for quantum state tomography #1485

Draft
wants to merge 21 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
3b78faf
QST-RGD
Oct 11, 2024
50a4739
Merge branch 'qiboteam:master' into QST
HuberyMing Oct 11, 2024
13ab8f2
Run_example
Oct 11, 2024
7a54d8f
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 11, 2024
8e1af29
Update src/qibo/tomography_RGD/Run_Tomo.py
HuberyMing Oct 17, 2024
cca0e2c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 17, 2024
489f617
Merge branch 'qiboteam:master' into QST
HuberyMing Oct 17, 2024
49caa21
Update src/qibo/tomography_RGD/Run_Tomo.py
HuberyMing Oct 17, 2024
6e3e066
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 17, 2024
1ac3eec
Update src/qibo/tomography_RGD/qibo_states.py
HuberyMing Oct 17, 2024
f532834
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 17, 2024
1e6e7fd
update random_density_matrix usage
Oct 17, 2024
16c1670
Update src/qibo/tomography_RGD/BasicTools.py
HuberyMing Oct 17, 2024
75f1234
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 17, 2024
a69251c
update Generate_All_labels fun
Oct 17, 2024
659dc63
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 17, 2024
506fde5
Merge branch 'qiboteam:master' into QST
HuberyMing Nov 13, 2024
b979ca7
shot measure to Pauli coef
Nov 13, 2024
2435060
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 13, 2024
5d95113
ghz_state usage
Nov 13, 2024
b6b2bd5
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 13, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
__pycache__/
*.py[cod]
*$py.class
src/qibo/tomography_RGD/testData/

# C extensions
*.so
Expand Down
57 changes: 57 additions & 0 deletions src/qibo/tomography_RGD/BasicTools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
#
# some tools
# 1. generate all labels
# 2. plot the results
#

# --------------------------------- #
# to generate all symbols #
# --------------------------------- #
from itertools import product

import matplotlib.pyplot as plt


def Generate_All_labels(nqubits, symbols=["I", "X", "Y", "Z"]):
all_labels = ["".join(elem) for elem in product(symbols, repeat=nqubits)]
return all_labels


def Plt_Err_Time(worker):
"""plot the Error w.r.t. optimization run time

Args:
worker (class): the optimization class instance
"""

Target_Err_Xk = worker.Target_Err_Xk
step_Time = worker.step_Time

RunT = []
Ttot = 0
for ti in range(-1, len(step_Time) - 1):
Each_Step = step_Time[ti]
Ttot += Each_Step
RunT.append(Ttot)

mk_list = ["+", "^", "o", "x", ">", "<", 2, 3]
ln_list = ["-", "-.", "--", "--", ":", "-"]

fig, axNow = plt.subplots(1, 1, figsize=(8, 6))

info = "{} qubits with sampling {} labels".format(worker.n, worker.num_labels)
axNow.plot(
RunT,
Target_Err_Xk,
marker=mk_list[0],
linestyle=ln_list[0],
label="{}".format(info),
)

axNow.set_xlabel(" Run time (sec)", fontsize=14)
axNow.set_ylabel(r"$\left\Vert X_k -\rho \right\Vert_F$", fontsize=14)

axNow.set_title("Error w.r.t. run time", y=1.0, fontsize=14)

plt.legend(loc="upper left")
plt.show()
196 changes: 196 additions & 0 deletions src/qibo/tomography_RGD/Run_Tomo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
#
# prepare the state, do the measurements
# and directly do the tomography
#
#

import measurements
import methodsMiFGD_core
import methodsRGD_core
import numpy as np
import projectors
import qutip as qu
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
import qutip as qu

from BasicTools import Generate_All_labels, Plt_Err_Time

# from states import GHZState, HadamardState, RandomState
from qibo_states import GHZState, HadamardState, RandomState

from qibo.quantum_info import random_density_matrix

if __name__ == "__main__":

############################################################
### Example of creating and running an experiment
############################################################

# n = 3; labels = projectors.generate_random_label_list(50, n)
n = 4
labels = projectors.generate_random_label_list(120, n)

# labels = ['YXY', 'IXX', 'ZYI', 'XXX', 'YZZ']
# labels = ['YZYX', 'ZZIX', 'XXIZ', 'XZIY', 'YXYI', 'ZYYX', 'YXXX', 'IIYY', 'ZIXZ', 'IXXI', 'YZXI', 'ZZYI', 'YZXY', 'XYZI', 'XZXI', 'XZYX', 'YIXI', 'IZYY', 'ZIZX', 'YXXY']
# labels = ['IIIX', 'IYIY', 'YYXI', 'ZZYY', 'ZYIX', 'XIII', 'XXZI', 'YXZI', 'IZXX', 'YYIZ', 'XXIY', 'XXZY', 'ZZIY', 'YIYX', 'YYZZ', 'YZXZ', 'YZYZ', 'ZXYY', 'IXIZ', 'XZII']
# labels = Generate_All_labels(n)

num_labels = len(labels)

circuit_Choice = 1
if circuit_Choice == 1: # generate from circuit
Nr = 1

# state = GHZState(n)
# state = HadamardState(n)
state = RandomState(n)

target_density_matrix = state.get_state_matrix()
target_state = state.get_state_vector()
# print(state.get_state_vector())

#
# DO the shot measurement
#

state.create_circuit()
data_dict_list = state.execute_measurement_circuits(labels)
# print(data_dict_list)

#
# shot measurement results --> coefficient for each Pauli operator
#

data_dict = {}
for ii in range(num_labels):
label = data_dict_list[ii]["label"]
data_dict[label] = data_dict_list[ii]["count_dict"]

measurement_list = measurements.MeasurementStore.calc_measurement_list(
labels, data_dict
)

elif circuit_Choice == 2: # directly generate density matrix via qutip
Nr = 1
rho = qu.rand_dm_ginibre(2**n, dims=[[2] * n, [2] * n], rank=Nr)
Copy link
Contributor

@renatomello renatomello Oct 17, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
rho = qu.rand_dm_ginibre(2**n, dims=[[2] * n, [2] * n], rank=Nr)
rho = random_density_matrix(2**n, rank=Nr, metric="ginibre")

target_density_matrix = rho.full()

elif circuit_Choice == 3: # directly generate density matrix via qibo
Nr = 3
target_density_matrix = random_density_matrix(2**n, Nr)

# ---------------------------------------------------------------- #
# construct Pauli matrix Projectors #
# ---------------------------------------------------------------- #

projector_store_path = "./testData/qiskit"
# projector_store_path = './testData/qibo'
projector_store = projectors.ProjectorStore(labels)

## store method (1)
# projector_store.populate(projector_store_path)
# projector_dict = projectors.ProjectorStore.load(projector_store_path, labels)

## store method (2)
num_cpus, saveP_bulk, Partition_Pj = projector_store.mpPool_map(
projector_store_path
)
projector_dict = projectors.ProjectorStore.load_PoolMap(
projector_store_path, labels
)

# ---------------------------------------------------------------- #
# calculate exact coefficient for each Pauli operator #
# ---------------------------------------------------------------- #

projector_list = [projector_dict[label] for label in labels]
yProj_Exact = methodsRGD_core.Amea(
projector_list, target_density_matrix, num_labels, 1
) # argv[-1] = coef

if circuit_Choice == 1: # generated from circuit
#
# comparison: manual check the result of shot measurements
#
ml = np.array(measurement_list, dtype=float)
ind = np.where(np.abs(yProj_Exact) > 0.5)

print(yProj_Exact[ind])
print(ml[ind])
elif circuit_Choice == 2 or circuit_Choice == 3: # directly generate density matrix
measurement_list = yProj_Exact
target_state = None

#
# system parameters
#
params_dict = {
"Nr": Nr,
"target_DM": target_density_matrix,
"labels": labels,
"measurement_list": measurement_list,
"projector_list": projector_list,
"num_iterations": 150,
"convergence_check_period": 1,
}
# params_dict['target_state'] = target_state

# ----------------------------------------------------------------- #
# do the tomography optimization #
# ----------------------------------------------------------------- #

#
# MiFGD numerical parameters
#

# Call_MiFGD = 1 # = 1: call the MiFGD optimization to calculate
# muList = [4.5e-5]

InitX_MiFGD = 1 # 0: random start, 1: MiFGD specified init
mu = 4.5e-5
eta = 0.01
Option = 2

# Num_mu = 1 # number of mu for running MiFGD
# pm_MiFGD = [Call_MiFGD, InitX_MiFGD, muList, Num_mu]
# Call_MiFGD, InitX_MiFGD, muList, Num_mu = pm_MiFGD

params_MiFGD = {"mu": mu, "eta": eta, "Option": Option}
# params_dict = {**params_dict, **params_MiFGD}

# Rpm_MiFGD = [InitX_MiFGD, mu, eta, Option]
# Frec_MiFGD, wc, RunTime = Run_MiFGD(params_dict, Rpm_MiFGD)

worker2 = methodsMiFGD_core.BasicWorker(params_dict, params_MiFGD)
worker2.compute(InitX_MiFGD)

#
# RGD numerical parameters
#

print("\n +++++++++++++++++ do the RGD tomography +++++++++++++++++\n")

# Call_RGD = 1 # = 1: call the RGD optimization to calculate

Md_tr = 0 # Method if including trace = 1
Md_alp = 0 # method for scaling alpha
Md_sig = 0 # method for scaling singular value
Ch_svd = (
-1
) # choice for initial SVD (0: LA.svd, 1: svds; 2: power_Largest_EigV, -1: rSVD)
InitX_RGD = 1
# method of choosing initial X0

# Rpm = [InitX_RGD, Md_tr, Md_alp, Md_sig, Ch_svd]
# pm_RGD = [Call_RGD, Rpm]
# Call_RGD, Rpm = pm_RGD

# InitX_RGD, Md_tr, Md_alp, Md_sig, Ch_svd = Rpm
# InitX_RGD = 1
# Rpm = InitX_RGD, Md_tr, Md_alp, Md_sig, Ch_svd

# exec(open('RGD_optRun.py').read())
# Frec_RGD, wc, RunTime = Run_RGD(params_dict, Rpm)

worker = methodsRGD_core.BasicWorkerRGD(params_dict)
# worker.computeRGD(InitX_RGD, Ch_svd, Md_tr, Md_alp, Md_sig)
worker.computeRGD(InitX_RGD, Ch_svd)

Plt_Err_Time(worker)
Loading