This is the our IROS 2020 work. VCR-Net is a deep-learning approach designed for performing rigid partial-partial point cloud registration. Our paper can be found on Arxiv.
@INPROCEEDINGS{9341249, author={Wei, Huanshu and Qiao, Zhijian and Liu, Zhe and Suo, Chuanzhe and Yin, Peng and Shen, Yueling and Li, Haoang and Wang, Hesheng}, booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, title={End-to-End 3D Point Cloud Learning for Registration Task Using Virtual Correspondences}, year={2020}, volume={}, number={}, pages={2678-2683}, doi={10.1109/IROS45743.2020.9341249}}
sympy
h5py
tqdm
tensorboardX
torchvision==0.7.0
pytorch==1.6.0
Train
#pre-train
python main.py --dataset=modelnet40 --test_batch_size=16 --batch_size=16 --model=lpd
#train
python main.py --dataset=modelnet40 --test_batch_size=16 --batch_size=4 -model_path=./pretrained/lpd-pretrained.t7
Test
python main.py --dataset=modelnet40 --test_batch_size=16 --batch_size=4 --model_path=./pretrained/vcrnet-whole.t7 --eval
Train
python main.py --dataset=modelnet40 --test_batch_size=24 --batch_size=4 --partial --overlap=0.575 ---model_path=./pretrained/vcrnet-whole.t7
Test
python main.py --dataset=modelnet40 --test_batch_size=24 --batch_size=4 --partial --overlap=0.575 --model_path=./pretrained/vcrnet-part.t7 --iter=3 --eval