add CI for HQQ #1
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Compile main | ||
on: | ||
push: | ||
branches: | ||
- main | ||
pull_request: | ||
workflow_dispatch: | ||
jobs: | ||
run-tinystories: | ||
strategy: | ||
matrix: | ||
runner: [ubuntu-latest, macos-12, macos-14] | ||
runs-on: ${{matrix.runner}} | ||
steps: | ||
- name: Checkout repo | ||
uses: actions/checkout@v2 | ||
- name: Setup Python | ||
uses: actions/setup-python@v2 | ||
with: | ||
python-version: 3.11 | ||
- name: Print machine info | ||
run: | | ||
uname -a | ||
if [ $(uname -s) == Darwin ]; then | ||
sysctl machdep.cpu.brand_string | ||
sysctl machdep.cpu.core_count | ||
fi | ||
- name: Install requirements | ||
run: | | ||
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu | ||
pip install -r requirements.txt | ||
pip install hqq | ||
- name: Download checkpoints | ||
run: | | ||
mkdir -p checkpoints/stories15M | ||
pushd checkpoints/stories15M | ||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt | ||
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model | ||
popd | ||
- name: Run inference | ||
run: | | ||
export MODEL_PATH=checkpoints/stories15M/stories15M.pt | ||
export MODEL_NAME=stories15M | ||
export MODEL_DIR=/tmp | ||
echo "******************************************" | ||
echo "******** HQQ: group-wise quantized *******" | ||
echo "******************************************" | ||
python generate.py --quant '{"linear:hqq" : {"group_size": 8}}' --checkpoint-path ${MODEL_PATH} --temperature 0 > ./output_eager | ||
cat ./output_eager | ||
python generate.py --compile --quant '{"linear:hqq" : {"group_size": 8}}' --checkpoint-path ${MODEL_PATH} --temperature 0 > ./output_compiled | ||
cat ./output_compiled | ||
python export.py --quant '{"embedding" : {"group_size": 8}}' --checkpoint-path ${MODEL_PATH} --output-dso-path ${MODEL_DIR}/${MODEL_NAME}.so | ||
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --dso-path ${MODEL_DIR}/${MODEL_NAME}.so > ./output_aoti | ||
cat ./output_aoti | ||
echo "tests complete" | ||
echo "******************************************" |