Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

link mean dim kernels #8053

Merged
merged 1 commit into from
Feb 1, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 27 additions & 24 deletions backends/cadence/fusion_g3/operators/op_mean.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ int prepare_data(
return num_axis_dims;
}

Tensor& mean_dim_out(
Tensor& mean_out(
KernelRuntimeContext& ctx,
const Tensor& in,
optional<ArrayRef<int64_t>> dim_list,
Expand Down Expand Up @@ -169,29 +169,32 @@ Tensor& mean_dim_out(
InvalidArgument,
out);

ET_SWITCH_REALHB_TYPES(in.scalar_type(), ctx, "mean.out", CTYPE_IN, [&] {
ET_SWITCH_FLOATH_TYPES(
out.scalar_type(), ctx, "mean.out", CTYPE_OUT, [&] {
CTYPE_OUT* out_data = out.mutable_data_ptr<CTYPE_OUT>();
const size_t num =
torch::executor::get_reduced_dim_product(in, dim_list);
for (size_t out_ix = 0; out_ix < out.numel(); ++out_ix) {
CTYPE_OUT sum = 0;
if (in.numel() > 0) {
sum = torch::executor::
map_reduce_over_dim_list<CTYPE_IN, CTYPE_OUT>(
[](CTYPE_IN v) { return static_cast<CTYPE_OUT>(v); },
[](CTYPE_OUT outv, CTYPE_OUT acc) {
return acc + outv;
},
in,
dim_list,
out_ix);
}
out_data[out_ix] = sum / static_cast<float>(num);
}
});
});
ET_SWITCH_REALHBBF16_TYPES(
in.scalar_type(), ctx, "mean.out", CTYPE_IN, [&] {
ET_SWITCH_FLOATHBF16_TYPES(
out.scalar_type(), ctx, "mean.out", CTYPE_OUT, [&] {
CTYPE_OUT* out_data = out.mutable_data_ptr<CTYPE_OUT>();
const size_t num =
torch::executor::get_reduced_dim_product(in, dim_list);
for (size_t out_ix = 0; out_ix < out.numel(); ++out_ix) {
CTYPE_OUT sum = 0;
if (in.numel() > 0) {
sum = torch::executor::
map_reduce_over_dim_list<CTYPE_IN, CTYPE_OUT>(
[](CTYPE_IN v) {
return static_cast<CTYPE_OUT>(v);
},
[](CTYPE_OUT outv, CTYPE_OUT acc) {
return acc + outv;
},
in,
dim_list,
out_ix);
}
out_data[out_ix] = sum / static_cast<float>(num);
}
});
});
}

return out;
Expand Down