Pairwise GP for Preference Learning, Sampling Strategies
Introduces a new Pairwise GP model for Preference Learning with pair-wise preferential feedback, as well as a Sampling Strategies abstraction for generating candidates from a discrete candidate set.
Compatibility
New Features
- Add
PairwiseGP
for preference learning with pair-wise comparison data (#388). - Add
SamplingStrategy
abstraction for sampling-based generation strategies, including
MaxPosteriorSampling
(i.e. Thompson Sampling) andBoltzmannSampling
(#218, #407).
Deprecations
- The existing
botorch.gen
module is moved tobotorch.generation.gen
and imports
frombotorch.gen
will raise a warning (an error in the next release) (#218).
Bug fixes
- Fix & update a number of tutorials (#394, #398, #393, #399, #403).
- Fix CUDA tests (#404).
- Fix sobol maxdim limitation in
prune_baseline
(#419).
Other changes
- Better stopping criteria for stochastic optimization (#392).
- Improve numerical stability of
LinearTruncatedFidelityKernel
(#409). - Allow batched
best_f
inqExpectedImprovement
andqProbabilityOfImprovement
(#411). - Introduce new logger framework (#412).
- Faster indexing in some situations (#414).
- More generic
BaseTestProblem
(9e604fe).