Skip to content

Pairwise GP for Preference Learning, Sampling Strategies

Compare
Choose a tag to compare
@Balandat Balandat released this 26 Apr 18:34

Introduces a new Pairwise GP model for Preference Learning with pair-wise preferential feedback, as well as a Sampling Strategies abstraction for generating candidates from a discrete candidate set.

Compatibility

  • Require PyTorch >=1.5 (#423).
  • Require GPyTorch >=1.1.1 (#425).

New Features

  • Add PairwiseGP for preference learning with pair-wise comparison data (#388).
  • Add SamplingStrategy abstraction for sampling-based generation strategies, including
    MaxPosteriorSampling (i.e. Thompson Sampling) and BoltzmannSampling (#218, #407).

Deprecations

  • The existing botorch.gen module is moved to botorch.generation.gen and imports
    from botorch.gen will raise a warning (an error in the next release) (#218).

Bug fixes

  • Fix & update a number of tutorials (#394, #398, #393, #399, #403).
  • Fix CUDA tests (#404).
  • Fix sobol maxdim limitation in prune_baseline (#419).

Other changes

  • Better stopping criteria for stochastic optimization (#392).
  • Improve numerical stability of LinearTruncatedFidelityKernel (#409).
  • Allow batched best_f in qExpectedImprovement and qProbabilityOfImprovement
    (#411).
  • Introduce new logger framework (#412).
  • Faster indexing in some situations (#414).
  • More generic BaseTestProblem (9e604fe).