Skip to content

Commit

Permalink
Make BaseTestFunction.evaluate_true accept 1d inputs (#2492)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #2492

Context:

Currently, every test function except for `AugmentedBranin` has an `evaluate_true` method that works with 1d inputs. It is actually surprising that so many work, since `BaseTestFunction` is currently written so that `BaseTestFunction.forward` casts inputs to 2d before passing them to `BaseTestFunction.evaluate_true`. So currently, it's not clear if we should expect `evaluate_true` to work with 1d inputs, but nonetheless this is happening downstream.

This PR:
* Requires `evaluate_true` to work with 1d inputs
* Removes the logic that expands the dimension of unbatched tensors in `forward` before passign to `evaluate_true` and then removes the batch dimension in favor of leaving unbatched tensors unbatched everywhere
* Changes `AugmentedBranin` to work with 1d inputs
* Fixes a couple type errors
* Expands docstrings

Differential Revision: D61916387
  • Loading branch information
esantorella authored and facebook-github-bot committed Aug 28, 2024
1 parent 017a124 commit e7169a0
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 18 deletions.
19 changes: 13 additions & 6 deletions botorch/test_functions/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,26 +55,33 @@ def forward(self, X: Tensor, noise: bool = True) -> Tensor:
r"""Evaluate the function on a set of points.
Args:
X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the
function.
X: A `(batch_shape) x d`-dim tensor of point(s) at which to evaluate
the function.
noise: If `True`, add observation noise as specified by `noise_std`.
Returns:
A `batch_shape`-dim tensor ouf function evaluations.
"""
batch = X.ndimension() > 1
X = X if batch else X.unsqueeze(0)
f = self.evaluate_true(X=X)
if noise and self.noise_std is not None:
_noise = torch.tensor(self.noise_std, device=X.device, dtype=X.dtype)
f += _noise * torch.randn_like(f)
if self.negate:
f = -f
return f if batch else f.squeeze(0)
return f

@abstractmethod
def evaluate_true(self, X: Tensor) -> Tensor:
r"""Evaluate the function (w/o observation noise) on a set of points."""
r"""
Evaluate the function (w/o observation noise) on a set of points.
Args:
X: A `(batch_shape) x d`-dim tensor of point(s) at which to
evaluate.
Returns:
A `batch_shape`-dim tensor.
"""
pass # pragma: no cover


Expand Down
2 changes: 1 addition & 1 deletion botorch/test_functions/multi_fidelity.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ class AugmentedBranin(SyntheticTestFunction):
def evaluate_true(self, X: Tensor) -> Tensor:
t1 = (
X[..., 1]
- (5.1 / (4 * math.pi**2) - 0.1 * (1 - X[:, 2])) * X[:, 0].pow(2)
- (5.1 / (4 * math.pi**2) - 0.1 * (1 - X[..., 2])) * X[..., 0].pow(2)
+ 5 / math.pi * X[..., 0]
- 6
)
Expand Down
30 changes: 19 additions & 11 deletions botorch/utils/testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from abc import abstractproperty
from collections import OrderedDict
from collections.abc import Sequence
from itertools import product
from typing import Any, Optional
from unittest import mock, TestCase

Expand Down Expand Up @@ -102,15 +103,22 @@ def assertAllClose(


class BaseTestProblemTestCaseMixIn:
def test_forward(self):
for dtype in (torch.float, torch.double):
for batch_shape in (torch.Size(), torch.Size([2]), torch.Size([2, 3])):
for f in self.functions:
f.to(device=self.device, dtype=dtype)
X = torch.rand(*batch_shape, f.dim, device=self.device, dtype=dtype)
X = f.bounds[0] + X * (f.bounds[1] - f.bounds[0])
res = f(X)
f(X, noise=False)
def test_forward_and_evaluate_true(self):
dtypes = (torch.float, torch.double)
batch_shapes = (torch.Size(), torch.Size([2]), torch.Size([2, 3]))
for dtype, batch_shape, f in product(dtypes, batch_shapes, self.functions):
f.to(device=self.device, dtype=dtype)
X = torch.rand(*batch_shape, f.dim, device=self.device, dtype=dtype)
X = f.bounds[0] + X * (f.bounds[1] - f.bounds[0])
res_forward = f(X)
res_evaluate_true = f.evaluate_true(X)
for method, res in {
"forward": res_forward,
"evaluate_true": res_evaluate_true,
}.items():
with self.subTest(
f"{dtype}_{batch_shape}_{f.__class__.__name__}_{method}"
):
self.assertEqual(res.dtype, dtype)
self.assertEqual(res.device.type, self.device.type)
tail_shape = torch.Size(
Expand Down Expand Up @@ -340,7 +348,7 @@ def posterior(
X: Tensor,
output_indices: Optional[list[int]] = None,
posterior_transform: Optional[PosteriorTransform] = None,
observation_noise: bool = False,
observation_noise: bool | torch.Tensor = False,
) -> MockPosterior:
if posterior_transform is not None:
return posterior_transform(self._posterior)
Expand All @@ -357,7 +365,7 @@ def batch_shape(self) -> torch.Size:
extended_shape = self._posterior._extended_shape()
return extended_shape[:-2]

def state_dict(self) -> None:
def state_dict(self, *args, **kwargs) -> None:
pass

def load_state_dict(
Expand Down

0 comments on commit e7169a0

Please sign in to comment.