Skip to content

fix: Fix output type for adjacency partitioner for single output graphs #2650

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion py/torch_tensorrt/dynamo/_exporter.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,12 @@ def create_trt_exp_program(
input_nodes = [node for node in gm.graph.nodes if node.op == "placeholder"]
output_nodes = [node for node in gm.graph.nodes if node.op == "output"]
assert output_nodes
output_nodes = output_nodes[0].args[0]
# breakpoint()
outputs = output_nodes[0].args[0]
if not isinstance(outputs, (tuple, list)):
outputs = (outputs,)
# HACK : Change the graph output node to be a tuple for ExportedProgram verifier to pass
output_nodes[0].args = (outputs,)

input_specs = [
InputSpec(InputKind.USER_INPUT, TensorArgument(name=node.name), node.target)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
DYNAMO_CONVERTERS as CONVERTERS,
)
from torch_tensorrt.dynamo.conversion._ConverterRegistry import ConverterRegistry
from torch_tensorrt.dynamo.partitioning.split_utils import split_by_tags

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -188,6 +189,14 @@ def remove_small_acc_subgraphs(self, subgraphs: List[Subgraph]) -> List[Subgraph
result.append(subgraph)
return result

def split(self, remove_tag: bool = False) -> torch.fx.GraphModule:
split_module = split_by_tags(self.module, self.tags)
if remove_tag:
for node in self.module.graph.nodes:
if hasattr(node, "tag"):
del node.tag
return split_module

def partition_graph(self) -> torch.fx.GraphModule:
"""Partitions the GraphModule into subgraphs based on operator support

Expand Down
296 changes: 296 additions & 0 deletions py/torch_tensorrt/dynamo/partitioning/split_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,296 @@
import copy
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Type, Union

import torch.fx
from torch.fx._compatibility import compatibility
from torch.fx.graph import map_arg
from torch.fx.passes.tools_common import NodeList
from torch.fx.passes.utils import HolderModule, lift_subgraph_as_module

__all__ = ["getattr_recursive", "Component", "split_by_tags"]


@compatibility(is_backward_compatible=False)
def getattr_recursive(obj, name):
for layer in name.split("."):
if hasattr(obj, layer):
obj = getattr(obj, layer)
else:
return None
return obj


@compatibility(is_backward_compatible=False)
@dataclass
class Component:
"""
A component serves as a container for a subgraph we want to create afterwards.
"""

graph: torch.fx.Graph
order: int
name: str

# Stores the placeholder nodes in `graph`.
input_placeholders: List = field(default_factory=list)

# Store the nodes in original graph that are placeholder in `graph`.
orig_inputs: List = field(default_factory=list)

# Store the nodes in original graph that are outputs in `graph`.
orig_outputs: List = field(default_factory=list)

# Mapping from get_attr node in original graph to get_attr node in `graph`.
getattr_maps: Dict[torch.fx.Node, torch.fx.Node] = field(default_factory=dict)
constructor_args: List[str] = field(default_factory=list)
gm: Optional[torch.fx.GraphModule] = None


@compatibility(is_backward_compatible=False)
def split_by_tags(
gm: torch.fx.GraphModule,
tags: List[str],
return_fqn_mapping: bool = False,
return_tuple: bool = False,
GraphModuleCls: Type[torch.fx.GraphModule] = torch.fx.GraphModule,
) -> Union[torch.fx.GraphModule, Tuple[torch.fx.GraphModule, Dict[str, str]]]:
"""
Splits a GraphModule using tags on its graph nodes. We honor the order of
tags. For example, we have tags = ["a", "b", "c"], the function will create
the initial submodules in the order of "a", "b", "c".

To set a tag:
gm.graph.nodes[idx].tag = "mytag"

This will result in all nodes with the same tag being extracted and placed in their
own submodule. For placeholder, output and get_attr node, the tag is ignored. placeholder
and output nodes are created when needed while get_attr nodes get copied to submodules
where they are used.

Given the following module def:

class SimpleModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(...)
self.linear2 = torch.nn.Linear(...)
self.linear3 = torch.nn.Linear(...)

def forward(self, in1, in2):
r1 = self.linear1(in1)
r2 = self.linear2(in2)
r3 = torch.cat([r1, r2])
return self.linear3(r3)

Marking the node corresponding to in1 with the tag sc.REQUEST_ONLY.lower() results in the following split:

ro:
def forward(self, in1):
self = self.root
linear1 = self.linear1(in1)
return linear1

main:
def forward(self, in2, linear1):
self = self.root
linear2 = self.linear2(in2)
cat_1 = torch.cat([linear1, linear2])
linear3 = self.linear3(cat_1)
return linear3

main:
def forward(self, in1, in2):
self = self.root
ro_0 = self.ro_0(in1)
main_1 = self.main_1(in2, ro_0)
return main_1

Returns:
split_gm: torch fx graph after split
orig_to_split_fqn_mapping: a map between the original fqn and the fqn
after split for call_module and get_attr.
"""

def flatten(x: torch.fx.node.Argument) -> NodeList:
"""
Stores nodes in x to a list and returns the list.
"""
r: NodeList = []
map_arg(x, r.append)
return r

# Mapping from node in original module to node in created submodule.
node_remapping: Dict[torch.fx.Node, torch.fx.Node] = {}

# Mapping from node in original module or created submodules to
# corresponding component.
node_to_component: Dict[torch.fx.Node, Component] = {}

# Mapping from tag to the corresponding component.
tag_to_component: Dict[str, Component] = {}

# Stores all components.
all_components: List[Component] = []

# Stores nodes that will be used in main graph.
used_in_main: Dict[torch.fx.Node, None] = {}

# Main graph after split.
main_g = torch.fx.Graph()

# Mapping from node in original module to node in main graph after split.
main_remapping: Dict[torch.fx.Node, torch.fx.Node] = {}

# Output node of original module.
output_node: Optional[torch.fx.Node] = None

# Create a component for each tag, we don't expect to create other components afterwards.
for tag in tags:
comp = Component(torch.fx.Graph(), len(all_components), f"{tag}")
all_components.append(comp)
tag_to_component[tag] = comp

# Traverse the nodes in original graph and take care of them.
for node in gm.graph.nodes:
if node.op == "output":
if output_node is not None:
raise RuntimeError("Multiple output nodes in graph!")
output_node = node
continue

# Placeholders in the original graph get copied to main graph.
if node.op == "placeholder":
main_remapping[node] = main_g.placeholder(node.name, type_expr=node.type)
main_remapping[node].meta = copy.copy(node.meta)
continue

# Get_attr nodes are ignored because we are not tagging them.
# Instead, we copy them directly to the submodules use them afterwards.
if node.op == "get_attr":
continue

# Now we process callable nodes which are nodes with op of call_module,
# call_function or call_method. Every callable nodes should be tagged.
assert hasattr(node, "tag")

upstream_components = [
node_to_component[x]
for x in flatten(node.args) + flatten(node.kwargs)
if x.op not in {"placeholder", "get_attr"}
]

comp = tag_to_component[node.tag]
node_to_component[node] = comp

# Max order of upperstream components.
mx = max((c.order for c in upstream_components), default=0)

# Expect the component for `node` has higher order then its upstream components.
assert comp.order >= mx

# Map a input of `node` to nodes in the component's graph.
def remap_func(x):
# If input is a get_attr node, copy it to current component's graph.
# Returns the get_attr node in current component's graph.
if x.op == "get_attr":
if x not in comp.getattr_maps:
comp.getattr_maps[x] = comp.graph.get_attr(
x.target, type_expr=x.type
)
return comp.getattr_maps[x]

# If input is not a placeholder, it should have been put into a component
# already. If it's the current component then we return the corresponding
# node in the component.
if x.op != "placeholder" and node_to_component[x] == comp:
return node_remapping[x]

# If input is a placeholder or it's in other components, we want to make it
# as a placeholder in current component's graph.
if x not in comp.orig_inputs:
comp.orig_inputs.append(x)
placeholder = comp.graph.placeholder(x.name, type_expr=x.type)
placeholder.meta = copy.copy(x.meta)
comp.input_placeholders.append(placeholder)
used_in_main[x] = None

return comp.input_placeholders[comp.orig_inputs.index(x)]

n = comp.graph.node_copy(node, remap_func)
n.tag = node.tag # type: ignore[attr-defined]
node_remapping[node] = n
node_to_component[n] = comp

if output_node is None:
raise RuntimeError("Graph had no output node!")

for x in flatten(output_node.args[0]):
if x.op == "get_attr":
# We don't need components mapping for nodes of type "get_attr"
# that are consumed by the output. Only need to make sure we create
# corresponding counterparts in the resulting graph.
main_remapping[x] = main_g.get_attr(x.name, type_expr=x.type)
else:
# All component results consumed by the output node should be
# marked as "used in main".
used_in_main[x] = None

# If a node is used in main graph then we mark it as an output in the component
# it belongs to.
for n in used_in_main:
if n.op != "placeholder":
node_to_component[n].orig_outputs.append(n)

# Now we create a graphmodule for each component.
orig_to_split_fqn_mapping: Dict[str, str] = {}
for comp in all_components:
outs = tuple(map(node_remapping.__getitem__, comp.orig_outputs))

if return_tuple:
comp.graph.output(outs)
else:
# Take care of the args of FX output node. If there's a single
# output then the output node args is like (output_single), else
# if there're multiple outputs then the output node args is like
# ((output_0, output_1, ...)).
comp.graph.output(outs[0] if len(outs) == 1 else outs)

comp.gm, comp_orig_to_split_fqn_mapping = lift_subgraph_as_module(
gm, subgraph=comp.graph, comp_name=comp.name
)
orig_to_split_fqn_mapping.update(comp_orig_to_split_fqn_mapping)

# Create a call_module node in main graph.
main_node = main_g.call_module(
comp.name,
args=tuple(map(main_remapping.__getitem__, comp.orig_inputs)),
kwargs=None,
)

if len(outs) == 1 and not return_tuple:
main_remapping[comp.orig_outputs[0]] = main_node
else:
for i, o in enumerate(comp.orig_outputs):
# Use Proxy to record getitem access.
main_remapping[o] = torch.fx.Proxy(main_node)[i].node # type: ignore[index]

outputs = output_node.args[0]
main_g.output(
map_arg(
outputs[0] if len(outputs) == 1 else outputs, main_remapping.__getitem__
)
)
main_root = HolderModule({comp.name: comp.gm for comp in all_components})

# If the output nodes consumes get_attr directly in the original graph,
# then we need to make sure get_attr is copied to the new graph.
for x in flatten(output_node.args[0]):
if x.op == "get_attr":
setattr(main_root, x.name, getattr_recursive(gm, x.target)) # type: ignore[arg-type]

result_gm = GraphModuleCls(main_root, main_g)
if return_fqn_mapping:
return result_gm, orig_to_split_fqn_mapping

return result_gm