Skip to content

Commit

Permalink
Initial update comment
Browse files Browse the repository at this point in the history
  • Loading branch information
ekatef committed Jul 18, 2023
1 parent ea30382 commit 20cfc1c
Showing 1 changed file with 130 additions and 108 deletions.
238 changes: 130 additions & 108 deletions scripts/solve_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,16 +86,10 @@
import pandas as pd
import pypsa
from _helpers import configure_logging
from linopy import merge
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
from pypsa.linopf import (
define_constraints,
define_variables,
get_var,
ilopf,
join_exprs,
linexpr,
network_lopf,
)
from pypsa.optimization.abstract import optimize_transmission_expansion_iteratively
from pypsa.optimization.optimize import optimize
from vresutils.benchmark import memory_logger

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -166,29 +160,32 @@ def add_CCL_constraints(n, config):
)

gen_country = n.generators.bus.map(n.buses.country)
# cc means country and carrier
p_nom_per_cc = (
pd.DataFrame(
{
"p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))),
"country": gen_country,
"carrier": n.generators.carrier,
}
capacity_variable = n.model["Generator-p_nom"]

lhs = []
ext_carriers = n.generators.query("p_nom_extendable").carrier.unique()
for c in ext_carriers:
ext_carrier = n.generators.query("p_nom_extendable and carrier == @c")
country_grouper = (
ext_carrier.bus.map(n.buses.country)
.rename_axis("Generator-ext")
.rename("country")
)
.dropna(subset=["p_nom"])
.groupby(["country", "carrier"])
.p_nom.apply(join_exprs)
ext_carrier_per_country = capacity_variable.loc[
country_grouper.index
].groupby_sum(country_grouper)
lhs.append(ext_carrier_per_country)
lhs = merge(lhs, dim=pd.Index(ext_carriers, name="carrier"))

min_matrix = agg_p_nom_minmax["min"].to_xarray().unstack().reindex_like(lhs)
max_matrix = agg_p_nom_minmax["max"].to_xarray().unstack().reindex_like(lhs)

n.model.add_constraints(
lhs >= min_matrix, name="agg_p_nom_min", mask=min_matrix.notnull()
)
n.model.add_constraints(
lhs <= max_matrix, name="agg_p_nom_max", mask=max_matrix.notnull()
)
minimum = agg_p_nom_minmax["min"].dropna()
if not minimum.empty:
minconstraint = define_constraints(
n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min"
)
maximum = agg_p_nom_minmax["max"].dropna()
if not maximum.empty:
maxconstraint = define_constraints(
n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max"
)


def add_EQ_constraints(n, o, scaling=1e-1):
Expand All @@ -212,76 +209,89 @@ def add_EQ_constraints(n, o, scaling=1e-1):
)
inflow = inflow.reindex(load.index).fillna(0.0)
rhs = scaling * (level * load - inflow)
dispatch_variable = n.model["Generator-p"].T
lhs_gen = (
linexpr(
(n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T)
)
.T.groupby(ggrouper, axis=1)
.apply(join_exprs)
(dispatch_variable * (n.snapshot_weightings.generators * scaling))
.groupby_sum(ggrouper)
.sum("snapshot")
)
lhs_spill = (
linexpr(
(
-n.snapshot_weightings.stores * scaling,
get_var(n, "StorageUnit", "spill").T,
)
if not n.storage_units_t.inflow.empty:
spillage_variable = n.model["StorageUnit-spill"]
lhs_spill = (
(spillage_variable * (-n.snapshot_weightings.stores * scaling))
.groupby_sum(sgrouper)
.sum("snapshot")
)
.T.groupby(sgrouper, axis=1)
.apply(join_exprs)
)
lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("")
lhs = lhs_gen + lhs_spill
define_constraints(n, lhs, ">=", rhs, "equity", "min")
lhs = merge(lhs_gen, lhs_spill)
else:
lhs = lhs_gen
n.model.add_constraints(lhs >= rhs, name="equity_min")


def add_BAU_constraints(n, config):
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
lhs = (
linexpr((1, get_var(n, "Generator", "p_nom")))
.groupby(n.generators.carrier)
.apply(join_exprs)
)
define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
# lhs = (
# linexpr((1, get_var(n, "Generator", "p_nom")))
# .groupby(n.generators.carrier)
# .apply(join_exprs)
# )
# define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
capacity_variable = n.model["Generator-p_nom"]
ext_i = n.generators.query("p_nom_extendable")
ext_carrier_i = ext_i.carrier.rename_axis("Generator-ext")
lhs = capacity_variable.groupby_sum(ext_carrier_i)
rhs = mincaps[lhs.coords["carrier"].values].rename_axis("carrier")
n.model.add_constraints(lhs >= rhs, name="bau_mincaps")


def add_SAFE_constraints(n, config):
peakdemand = (
1.0 + config["electricity"]["SAFE_reservemargin"]
) * n.loads_t.p_set.sum(axis=1).max()
peakdemand = n.loads_t.p_set.sum(axis=1).max()
margin = 1.0 + config["electricity"]["SAFE_reservemargin"]
reserve_margin = peakdemand * margin
conv_techs = config["plotting"]["conv_techs"]
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
capacity_variable = n.model["Generator-p_nom"]
ext_cap_var = capacity_variable.sel({"Generator-ext": ext_gens_i})
lhs = ext_cap_var.sum()
exist_conv_caps = n.generators.query(
"~p_nom_extendable & carrier in @conv_techs"
).p_nom.sum()
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum()
rhs = peakdemand - exist_conv_caps
define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap")
rhs = reserve_margin - exist_conv_caps
n.model.add_constraints(lhs >= rhs, name="safe_mintotalcap")


def add_operational_reserve_margin_constraint(n, config):
def add_operational_reserve_margin_constraint(n, sns, config):
reserve_config = config["electricity"]["operational_reserve"]
EPSILON_LOAD = reserve_config["epsilon_load"]
EPSILON_VRES = reserve_config["epsilon_vres"]
CONTINGENCY = reserve_config["contingency"]

# Reserve Variables
reserve = get_var(n, "Generator", "r")
lhs = linexpr((1, reserve)).sum(1)
n.model.add_variables(
0, np.inf, coords=[sns, n.generators.index], name="Generator-r"
)
reserve = n.model["Generator-r"]
lhs = reserve.sum("Generator")

# Share of extendable renewable capacities
ext_i = n.generators.query("p_nom_extendable").index
vres_i = n.generators_t.p_max_pu.columns
if not ext_i.empty and not vres_i.empty:
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
renewable_capacity_variables = get_var(n, "Generator", "p_nom")[
vres_i.intersection(ext_i)
]
lhs += linexpr(
(-EPSILON_VRES * capacity_factor, renewable_capacity_variables)
).sum(1)
renewable_capacity_variables = (
n.model["Generator-p_nom"]
.sel({"Generator-ext": vres_i.intersection(ext_i)})
.rename({"Generator-ext": "Generator"})
)
lhs = merge(
lhs,
(renewable_capacity_variables * (-EPSILON_VRES * capacity_factor)).sum(
["Generator"]
),
)

# Total demand at t
demand = n.loads_t.p.sum(1)
# Total demand per t
demand = n.loads_t.p_set.sum(1)

# VRES potential of non extendable generators
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
Expand All @@ -291,32 +301,36 @@ def add_operational_reserve_margin_constraint(n, config):
# Right-hand-side
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY

define_constraints(n, lhs, ">=", rhs, "Reserve margin")
# define_constraints(n, lhs, ">=", rhs, "Reserve margin")
n.model.add_constraints(lhs >= rhs, name="reserve_margin")


def update_capacity_constraint(n):
gen_i = n.generators.index
ext_i = n.generators.query("p_nom_extendable").index
fix_i = n.generators.query("not p_nom_extendable").index

dispatch = get_var(n, "Generator", "p")
reserve = get_var(n, "Generator", "r")

capacity_fixed = n.generators.p_nom[fix_i]

dispatch = n.model["Generator-p"]
reserve = n.model["Generator-r"]
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
capacity_fixed = n.generators.p_nom[fix_i]

lhs = linexpr((1, dispatch), (1, reserve))
lhs = merge(
dispatch * 1,
reserve * 1,
)

if not ext_i.empty:
capacity_variable = get_var(n, "Generator", "p_nom")
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(
columns=gen_i, fill_value=""
capacity_variable = n.model["Generator-p_nom"]
lhs = merge(
lhs,
capacity_variable.rename({"Generator-ext": "Generator"}) * -p_max_pu[ext_i],
)

rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)

define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint")
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i)
n.model.add_constraints(
lhs <= rhs, name="gen_updated_capacity_constraint", mask=rhs.notnull()
)


def add_operational_reserve_margin(n, sns, config):
Expand All @@ -325,26 +339,25 @@ def add_operational_reserve_margin(n, sns, config):
https://genxproject.github.io/GenX/dev/core/#Reserves.
"""

define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])

add_operational_reserve_margin_constraint(n, config)

# define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])
# add_operational_reserve_margin_constraint(n, config)
add_operational_reserve_margin_constraint(n, sns, config)
update_capacity_constraint(n)


def add_battery_constraints(n):
nodes = n.buses.index[n.buses.carrier == "battery"]
if nodes.empty or ("Link", "p_nom") not in n.variables.index:
# if nodes.empty or ("Link", "p_nom") not in n.variables.index:
if nodes.empty:
return
link_p_nom = get_var(n, "Link", "p_nom")
lhs = linexpr(
(1, link_p_nom[nodes + " charger"]),
(
-n.links.loc[nodes + " discharger", "efficiency"].values,
link_p_nom[nodes + " discharger"].values,
),
vars_link = n.model["Link-p_nom"]
eff = n.links.loc[nodes + " discharger", "efficiency"]
lhs = merge(
vars_link.sel({"Link-ext": nodes + " charger"}) * 1,
# for some reasons, eff is one element longer as compared with vars_link
vars_link.sel({"Link-ext": nodes + " discharger"}) * -eff[-1],
)
define_constraints(n, lhs, "=", 0, "Link", "charger_ratio")
n.model.add_constraints(lhs == 0, name="link_charger_ratio")


def extra_functionality(n, snapshots):
Expand Down Expand Up @@ -384,24 +397,29 @@ def solve_network(n, config, opts="", **kwargs):
n.config = config
n.opts = opts

if cf_solving.get("skip_iterations", False):
network_lopf(
skip_iterations = cf_solving.get("skip_iterations", False)
if not n.lines.s_nom_extendable.any():
skip_iterations = True
logger.info("No expandable lines found. Skipping iterative solving.")

if skip_iterations:
optimize(
n,
solver_name=solver_name,
solver_options=solver_options,
extra_functionality=extra_functionality,
**kwargs
**kwargs,
)
else:
ilopf(
optimize_transmission_expansion_iteratively(
n,
solver_name=solver_name,
solver_options=solver_options,
track_iterations=track_iterations,
min_iterations=min_iterations,
max_iterations=max_iterations,
extra_functionality=extra_functionality,
**kwargs
**kwargs,
)
return n

Expand Down Expand Up @@ -429,15 +447,19 @@ def solve_network(n, config, opts="", **kwargs):
fn = getattr(snakemake.log, "memory", None)
with memory_logger(filename=fn, interval=30.0) as mem:
n = pypsa.Network(snakemake.input[0])
if snakemake.config["augmented_line_connection"].get("add_to_snakefile"):
n.lines.loc[
n.lines.index.str.contains("new"), "s_nom_min"
] = snakemake.config["augmented_line_connection"].get("min_expansion")
# TODO Double-check handling the augmented case
# if snakemake.config["augmented_line_connection"].get("add_to_snakefile"):
# n.lines.loc[
# n.lines.index.str.contains("new"), "s_nom_min"
# ] = snakemake.config["augmented_line_connection"].get("min_expansion")
n = prepare_network(n, solve_opts)
n = solve_network(
n,
config=snakemake.config,
opts=opts,
# TODO The initial version looks clearer...
# config=snakemake.config,
# opts=opts,
snakemake.config,
opts,
solver_dir=tmpdir,
solver_logfile=snakemake.log.solver,
)
Expand Down

0 comments on commit 20cfc1c

Please sign in to comment.