Inpsired by https://github.com/bereketkibru/Data_engineering_sensor_data
Using a docker-compose file, developed a completely dockerized ELT pipeline with MySQL for data storage, Airflow for automation and orchestration, DBT for data transformation, and a Redash dashboard connected to the MySQL database.
Tech Stack used in this project
Make sure you have docker installed on local machine.
- Docker
- DockerCompose
-
Clone the repo
git clone https://github.com/pyjavo/update_csv_pipeline
-
Create directory
/data
at the root of the project. -
Save file
archivo.csv
within/data
directory. -
Build
docker-compose build
-
Create DB for server service
docker-compose run --rm server create_db
-
Run
docker-compose up
-
Open Airflow web browser
Navigate to `http://localhost:8000/` on the browser use `admin` for username use `admin` for password
-
Access redash dashboard
Navigate to `http://localhost:5000/` on the browser
-
Access your MySQL database using adminer
Navigate to `http://localhost:8080/` on the browser choose mysql databse use `root` for username use `root` for password use `mysqldb` for database
Recommended docstring format is Google format
Distributed under the MIT License. See LICENSE
for more information.