Skip to content

Commit

Permalink
Merge pull request #40 from putianyi889/dev
Browse files Browse the repository at this point in the history
修复电子版和夜间模式论坛链接
  • Loading branch information
putianyi889 authored Dec 28, 2023
2 parents 913f071 + 030f2fe commit cdd8ffd
Show file tree
Hide file tree
Showing 8 changed files with 291 additions and 4 deletions.
5 changes: 5 additions & 0 deletions .github/workflows/latex.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,8 @@ jobs:
with:
root_file: TerrariaWiringTutorial_printed.tex
latexmk_use_xelatex: true
- name: Compile Night Mode
uses: xu-cheng/latex-action@v2
with:
root_file: TerrariaWiringTutorial_nightmode.tex
latexmk_use_xelatex: true
195 changes: 195 additions & 0 deletions chapters/comblogic.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
\chapter{代数理论}

目前代数理论可以用于解决组合逻辑与推广递次的电路压缩问题。本章内容面向有线性代数基础的读者。没有线性代数基础的读者需要预先学习向量、矩阵、线性方程组、行列式、秩的运算。群论基础对于本章内容的理解有帮助但是没有必要。

\section{$\mathbb{Z}_2$简介}
把整数分成奇数和偶数,则有如下运算规律:
\begin{center}
\begin{tabular}{|c|cc|}
\hline
$+$&偶&奇\\\hline
偶&偶&奇\\
奇&奇&偶\\\hline
\end{tabular}
\begin{tabular}{|c|cc|}
\hline
$\times$&偶&奇\\\hline
偶&偶&偶\\
奇&偶&奇\\\hline
\end{tabular}
\end{center}

$\mathbb{Z}_2=\{0,1\}$表示整数除以2所得余数的集合,则0代表偶数,1代表奇数,0和1之间的加法和乘法运算遵守上述奇偶的运算规律,即
\begin{center}
\begin{tabular}{|c|cc|}
\hline
$+$&0&1\\\hline
0&0&1\\
1&1&0\\\hline
\end{tabular}
\begin{tabular}{|c|cc|}
\hline
$\times$&0&1\\\hline
0&0&0\\
1&0&1\\\hline
\end{tabular}
\end{center}

另外,定义除法为乘法的逆运算,即$0\div 1=0$$1\div 1=1$,除数不能为0。定义减法为加法的逆运算,由于$\mathbb{Z}_2$中恰好有$1=-1$,减法和加法的运算规则完全一样。

加法和乘法满足交换律和结合律,乘法对加法满足分配律。

$\mathbb{Z}_2$上的乘法和加法可以很好地描述泰拉瑞亚电路逻辑,如\autoref{fig83}所示。把多根线接到同一个输出上,相当于做加法;与逻辑相当于多个输入做乘法。

\begin{figure}[!htp]
\centering
\subfloat[]{
\label{i350:351:2}
\adjincludegraphics{images/350.png}%
\quad%
\adjincludegraphics{images/351.png}
}%
\subfloat[]{
\label{i352:353:2}
\adjincludegraphics{images/352.png}%
\quad%
\adjincludegraphics{images/353.png}
}%
\caption{
\protect\subref{i350:351:2}加法:$B=A+C$
\protect\subref{i352:353:2}乘法:$C=AB$
}\label{fig83}
\end{figure}

\section{$\mathbb{Z}_2$上的线性代数}
通过定义$\mathbb{Z}_2$上的加减乘除就可以导出$\mathbb{Z}_2$上的线性代数,基本理论也和实/复数域上线性代数没有什么区别。唯一需要注意的是,$\mathbb{Z}_2$上的多项式环结构不同于实/复数域,所以相应的特征值理论有区别,这个区别将在后续小节中细说。本小节将侧重于解释为什么我们需要用到$\mathbb{Z}_2$上的线性代数。

$\mathbb{Z}_2$上的向量和矩阵在电路中有实际意义,因为接线的本质就是矩阵。

%\begin{example}{}{}
% 一个逻辑门上的普通逻辑灯状态可以排列成一个向量,亮对应$\mathbb{Z}_2$中的1,灭对应$\mathbb{Z}_2$中的0。
%\end{example}
\begin{example}{}{}
一个七段线显示器的状态可以表示成一个$\mathbb{Z}_2$上的7维向量。考虑如图所示的七段线显示结构,七个输入并不直接对应七段线。输入的状态表示为$\mathbf{x}=(x_1,\dots,x_7)$,七段线状态表示为$\mathbf{y}=(y_1,\dots,y_7)$

\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw[rounded corners, fill] (0,0) rectangle node[white] {$y_7$} (3,1);
\draw[rounded corners, fill] (0,1) rectangle node[white] {$y_5$} (-1,4);
\draw[rounded corners, fill] (3,1) rectangle node[white] {$y_6$} (4,4);
\draw[rounded corners, fill] (0,4) rectangle node[white] {$y_4$} (3,5);
\draw[rounded corners, fill] (0,5) rectangle node[white] {$y_2$} (-1,8);
\draw[rounded corners, fill] (3,5) rectangle node[white] {$y_3$} (4,8);
\draw[rounded corners, fill] (0,8) rectangle node[white] {$y_1$} (3,9);

\draw[red, ultra thick] (-0.25,3.75) -- (-0.25,0.75) -- (3.25,0.75) -- (3.25,3.75) -- (10,3.75) node[thmcoltext, anchor=west] {$x_5$};
\draw[cyan, ultra thick] (0.25,0.5) -- (3.5,0.5) -- (3.5,3.5) -- (3.5,3.0) -- (10,3.0) node[thmcoltext, anchor=west] {$x_6$};
\draw[green, ultra thick] (3.75,1.25) -- (3.75,3.5) -- (3.75,2.25) -- (10,2.25) node[thmcoltext, anchor=west] {$x_7$};

\draw[red, ultra thick] (-0.25,5.25) -- (-0.25,8.25) -- (3.25,8.25) -- (3.25,5.25) -- (10,5.25) node[thmcoltext, anchor=west] {$x_3$};
\draw[cyan, ultra thick] (0.25,8.5) -- (3.5,8.5) -- (3.5,5.5) -- (3.5,6) -- (10,6) node[thmcoltext, anchor=west] {$x_2$};
\draw[green, ultra thick] (3.75,7.75) -- (3.75,5.5) -- (3.75,6.75) -- (10,6.75) node[thmcoltext, anchor=west] {$x_1$};

\draw[brown, ultra thick] (-0.5,1.25) -- (-0.5,7.75);
\draw[brown, ultra thick] (-0.5,4.5) -- (10,4.5) node[thmcoltext, anchor=west] {$x_4$};
\end{tikzpicture}
\end{center}

七个输入和七段线的对应关系可以用一个矩阵表示:

\[\begin{array}{c|ccccccc}
& y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 \\\hline
x_1 & & & 1 & & & & \\
x_2 & 1 & & 1 & & & & \\
x_3 & 1 & 1 & 1 & & & & \\
x_4 & & 1 & & 1 & 1 & & \\
x_5 & & & & & 1 & 1 & 1 \\
x_6 & & & & & & 1 & 1 \\
x_7 & & & & & & 1 & \\\hline
\end{array}\]

%表格中每行表示一个输入覆盖的段,可以理解为一个7维行向量;每列表示经过一个分段的输入,可以理解为一个7维列向量。去掉表头,这个表格就是一个$\mathbb{Z}_2$上的$7\times 7$\myind{矩阵},记为$\mathbf{A}$。

%一个分段的值等于经过它的输入的和,例如$y_3=x_1+x_2+x_3$。这可以写成$y_3=1x_1+1x_2+1x_3+0x_4+0x_5+0x_6+0x_7$,即$y_3$是输入$\mathbf{x}$和矩阵中对应列向量的\myind{向量积}:

%\[
% y_3=\mathbf{x}(1,1,1,0,0,0,0)^\top,
%\]
记这个矩阵为$\mathbf{A}^\top$,七段线的初始状态为$\mathbf{b}$,则分段与输入的关系可以表示为$\mathbf{y}=\mathbf{A}\mathbf{x}+\mathbf{b}$.

\end{example}

一般的组合逻辑可以看作集合。
\begin{definition}{}{}
$n$输入的组合逻辑和$\mathbb{Z}_2^n$的子集存在一一对应关系。设某逻辑为$n$元函数$f$,则相应的集合为$f^{-1}(1)=\{\mathbf{v}\in\mathbb{Z}_2^n:f(\mathbf{v})=1\}$,这个集合称为$f$\emph{特征集}。一个组合逻辑的输入数称为该逻辑的\emph{维数},特征集的秩称为该逻辑的\emph{}。
\end{definition}
\begin{example}{}{}
$n$维异或逻辑的特征集是$\mathbb{Z}_2^n$的标准基。
\end{example}
\begin{theorem}{TNoName \& putianyi888}{}
假设某$n$维组合逻辑可以用单异或门实现,则该异或门的最优灯数不超过$n+1$
\end{theorem}
\begin{proof}
$V=\mathbb{Z}_2^n$表示输入空间,$U=\mathbb{Z}_2^m$表示灯的状态空间。用矩阵$\boldsymbol{L}\in\mathbb{Z}_2^{m\times n}$表示接线,向量$\boldsymbol{b}\in U$表示灯的初始状态,则$L:V\to U, \boldsymbol{v}\mapsto \boldsymbol{L}\boldsymbol{v}+\boldsymbol{b}$表示从输入到灯的状态的映射。设某$n$维逻辑为$f:V\to\mathbb{Z}_2$,实现该逻辑的异或门为$g:U\to \mathbb{Z}_2^n$。假设$m>n+1$

先考虑齐次情况$\boldsymbol{b}=\boldsymbol{0}$。由于$\dim(V)=n$$L(V)$$U$的一个$n'\le n$维线性子空间。因为$m>n+1\ge n'+1$,取$U/L(V)$的一组基$\boldsymbol{A}=(\boldsymbol{\alpha}_1,\dots,\boldsymbol{\alpha}_{m-n'})$。由于$g$是异或逻辑,$g^{-1}(1)$$U$的标准基,且$L(f^{-1}(1))=g^{-1}(1)\cap L(V)$。记$L(f^{-1}(1))$$\boldsymbol{B}=(\boldsymbol{\beta}_1,\dots,\boldsymbol{\beta}_r)$,取$L(V)/\spanspace(L(f^{-1}))$的一组基$\boldsymbol{C}=(\boldsymbol{\gamma}_1,\dots,\boldsymbol{\gamma}_{n'-r})$。显然$(\boldsymbol{B}|\boldsymbol{C}|\boldsymbol{A})$$U$的一组基。

构造$U$的另一组基$\boldsymbol{F}=(\boldsymbol{B}|\boldsymbol{C}+\boldsymbol{\alpha}_1|\boldsymbol{A})$,其中$\boldsymbol{C}+\boldsymbol{\alpha}_1$表示将$\boldsymbol{\alpha}_1$加到$\boldsymbol{C}$的每一列上。记$F^{-1}:\boldsymbol{v}\mapsto\boldsymbol{F}^{-1}\boldsymbol{v}$是将$\boldsymbol{F}$映到标准基的线性映射。考虑复合映射$F^{-1}L$,有
\begin{enumerate}
\item$\boldsymbol{v}\in f^{-1}(1)$时,$L(\boldsymbol{v})\in\boldsymbol{B}$,从而$F^{-1}L(\boldsymbol{v})$是一个标准基向量。
\item$\boldsymbol{v}\in V\backslash f^{-1}(1)$时,$L(\boldsymbol{v})\notin\boldsymbol{F}$,从而$F^{-1}L(\boldsymbol{v})$不是一个标准基向量。
\item$\boldsymbol{v}\in V$时,$L(\boldsymbol{v})\in\spanspace(\boldsymbol{B}|\boldsymbol{C})\subseteq\spanspace(\boldsymbol{B}|\boldsymbol{C}+\boldsymbol{\alpha}_1|\boldsymbol{\alpha}_1)$,从而$F^{-1}L(\boldsymbol{v})$的后$(m-n'-1)$个分量为0。
\end{enumerate}
综上三条性质,接线$F^{-1}L$$L$对于异或门是等价逻辑,且在接线$F^{-1}L$的情况下,异或门的后$(m-n'-1)$个灯恒灭,所以这些灯可以去掉,剩下$(n'+1)$个灯。

对于非齐次情况$\boldsymbol{b}\ne\boldsymbol{0}$,如果$\boldsymbol{b}\in \boldsymbol{L}V$,那么$L(V)=\boldsymbol{L}V$,退化为齐次情况。如果$L(V)\cap g^{-1}(1)=\emptyset$,则$f(V)=\{0\}$,退化为平凡逻辑。

一般地,取$\boldsymbol{b}'\in L(V)\cap g^{-1}(1)$,那么$L(V)=\boldsymbol{L}V+\boldsymbol{b}'$
\end{proof}

\section{$\mathbb{Z}_2$上的多项式}


% \section{向量与矩阵}
% $\mathbb{Z}_2$上的向量即为一组有序的$\mathbb{Z}_2$元素。向量组成向量空间。





% \begin{definition}{}{}
% $\mathbb{Z}_2^n=\{(x_1,\dots,x_n): x_k\in\mathbb{Z}_2\}$是$\mathbb{Z}_2$上的$n$维向量空间。$\mathbb{Z}_2^n$中的元素是$\mathbb{Z}_2$上的$n$维向量。
% \end{definition}

% 向量的加减法定义为对应元素加减:
% \[
% (x_1,\dots,x_n) + (y_1,\dots,y_n) = (x_1+y_1,\dots,x_n+y_n).
% \]

% 数字乘向量定义为用数字乘向量中的每个元素:
% \[
% \lambda(x_1,\dots,x_n) = (\lambda x_1,\dots,\lambda x_n).
% \]
% 由于$\mathbb{Z}_2$中仅有0和1两个数字,所以向量的数乘可以列举为
% \[
% 1\mathbf{x}=\mathbf{x},\qquad 0\mathbf{x}=\mathbf{0},
% \]
% 其中粗体小写字母表示向量,$\mathbf{0}$表示零向量,即向量中所有元素都是0。



% $\mathbb{Z}_2$元素也可以有序地组成矩阵。矩阵组成矩阵空间。
% \begin{definition}
% $\mathbb{Z}_2^{m\times n}=\left\{\begin{pmatrix}
% x_{11}&x_{12}&\cdots&x_{1n}\\
% x_{21}&x_{22}&\cdots&x_{2n}\\
% \vdots&\vdots&\ddots&\vdots\\
% x_{m1}&x_{m2}&\cdots&x_{mn}
% \end{pmatrix}: x_{jk}\in\mathbb{Z}_2\right\}$是$\mathbb{Z}_2$上的$m\times n$维矩阵空间。$\mathbb{Z}_2^{m\times n}$中的元素是$\mathbb{Z}_2$上的$m\times n$维矩阵。
% \end{definition}

% 矩阵也可以看作向量的向量。一个$m\times n$维矩阵既可以理解为由$m$个$n$维行向量组成的列向量也可以理解为由$n$个$m$维列向量组成的行向量。$n$维行向量也可以看作$1\times n$维矩阵,$m$维列向量也可以看作$m\times 1$维矩阵。

% 按照向量加减法与数乘的定义,矩阵加减法也定义成对应元素加减,矩阵数乘也定义成用数字乘矩阵中的每个元素。

% 矩阵一般用粗体大写字母表示。零矩阵用$\mathbf{O}$表示。
63 changes: 63 additions & 0 deletions chapters/latexreference.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
\chapter{文档开发引导}

本文档使用\LaTeX 编写,在TeXLive 2022环境下编译。为了便于开发,文档导言区定义了一些命令与变量,本附录即为这些功能的文档。

\section{三种排版主题}

本文档支持三种排版主题。优先保证电子版外观。

\begin{itemize}
\item 打印版的文本内容最多。打印版不能用文本搜索功能,所以添加了索引;打印版不能点击超链接,所以链接均为明文。打印版的排版是针对双面打印的,页边距较宽,奇偶页边距不同。打印版通过编译\trvar{TerrariaWiringTutorial\_printed.tex}生成。
\item 电子版用于在电子屏幕上浏览。电子版的超链接地址全部隐藏用于节省空间,网站logo尽量采用小图标,页边距较窄,上下页边距极窄,便于电脑/手机浏览。电子版通过编译\trvar{TerrariaWiringTutorial\_onscreen.tex}生成。
\item 夜间模式是暗色主题的电子版,用于在低亮度环境下浏览。夜间模式通过编译\trvar{TerrariaWiringTutorial\_nightmode.tex}生成。
\end{itemize}

\section{格式标准}

\subsection{插图}
插图使用\lstinline{adjustbox}宏包的\lstinline{\adjincludegraphics}

\section{预设颜色}

预设颜色定义在\trvar{preambles/skin.tex}中。

\begin{longtable}{|c|c|}
\hline
名称 & 描述 \\\hline
\endhead
\textcolor{bilibiliblue}{bilibiliblue} & 哔哩哔哩蓝 \\\hline
\textcolor{youkudeeppink}{youkudeeppink} & 优酷logo最深的粉色 \\\hline
\textcolor{terrariaforumback}{terrariaforumback} & 泰拉瑞亚官方论坛背景 \\\hline
\textcolor{terrariaforumtext}{terrariaforumtext} & 泰拉瑞亚官方论坛文本 \\\hline
\textcolor{bbstrback}{bbstrback} & 泰拉瑞亚中文论坛背景 \\\hline
\textcolor{bbstrtext}{bbstrtext} & 泰拉瑞亚中文论坛文本 \\\hline
\makecell{
\textcolor{redwiredarkborder}{redwiredarkborder}\\
\textcolor{redwirelightborder}{redwirelightborder}\\
\textcolor{redwirelight}{redwirelight}\\
\textcolor{redwiremiddle}{redwiremiddle}\\
\textcolor{redwiredark}{redwiredark}
} & 红色电线配色 \\\hline
\makecell{
\textcolor{bluewiredarkborder}{bluewiredarkborder}\\
\textcolor{bluewirelightborder}{bluewirelightborder}\\
\textcolor{bluewirelight}{bluewirelight}\\
\textcolor{bluewiremiddle}{bluewiremiddle}\\
\textcolor{bluewiredark}{bluewiredark}
} & 蓝色电线配色 \\\hline
\makecell{
\textcolor{greenwiredarkborder}{greenwiredarkborder}\\
\textcolor{greenwirelightborder}{greenwirelightborder}\\
\textcolor{greenwirelight}{greenwirelight}\\
\textcolor{greenwiremiddle}{greenwiremiddle}\\
\textcolor{greenwiredark}{greenwiredark}
} & 绿色电线配色 \\\hline
\makecell{
\textcolor{yellowwiredarkborder}{yellowwiredarkborder}\\
\textcolor{yellowwirelightborder}{yellowwirelightborder}\\
\textcolor{yellowwirelight}{yellowwirelight}\\
\textcolor{yellowwiremiddle}{yellowwiremiddle}\\
\textcolor{yellowwiredark}{yellowwiredark}
} & 黄色电线配色 \\\hline
\textcolor{thmcolback}{thmcolback} & 定理类环境背景\\\hline
\end{longtable}
8 changes: 8 additions & 0 deletions chapters/peopleandcommunity.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
\chapter{重要的玩家与社区}

\begin{longtable}{|c|c|c|c|c|c|}
\hline
代号 & \adjustimage{height=12pt, align=c}{figure/tmec.png} & \adjustimage{height=12pt, align=c}{figure/discordcommunity.png} & \adjustimage{height=12pt, align=c}{figure/bbstr.png} & \adjustimage{height=12pt, align=c}{figure/qqcommunity.png} & \adjustimage{height=12pt, align=c}{figure/tiebacommunity.jpg}\\\hline
\endhead
putianyi888 & \href{https://forums.terraria.org/index.php?members/121300}{\small\sffamily putianyi888} & \vipbox{figure/putianyi888.jpg}{putianyi888}{} & \href{}{}
\end{longtable}
2 changes: 1 addition & 1 deletion labels used.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ fig1, fig2, fig3, fig4, fig5, fig6, fig7, fig8, fig9, fig10,
fig51, fig52, fig53, fig54, fig55, fig56, fig57, fig58, fig59, fig60,
fig61, fig62, fig63, fig64, fig65, fig66, fig67, fig68, fig69, fig70,
fig71, fig72, fig73, fig74, fig75, fig76, fig77, fig78, fig79, fig80,
fig81, fig82,
fig81, fig82, fig83
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9, tab10,
tab11, tab12, tab13, tab14, tab15, tab16, tab17, tab18
tab1406,
Expand Down
3 changes: 2 additions & 1 deletion main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
\include{chapters/Sources}
%\include{chapters/chapter8}
\include{chapters/chapter5}
%\include{chapters/comblogic}
%\include{chapters/Farm}

\appendix
Expand All @@ -70,4 +71,4 @@
\include{chapters/cooldown}
\include{chapters/knowledge}
\include{chapters/chapter6}

%\include{chapters/latexreference}
10 changes: 10 additions & 0 deletions preambles/envs.tex
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,16 @@
fonttitle=\bfseries,
blueframe
}{}
\newtcbtheorem{definition}{定义}{
breakable,
colframe=greencolframe, colback=thmcolback, coltext=thmcoltext,
skin=enhanced,
parbox=false,
sharp corners=all,
before title={\noindent},
fonttitle=\bfseries,
greenframe
}{}
\newtcbtheorem{problem}{思考题}{
breakable,
colframe=yellowcolframe, colback=thmcolback, coltext=thmcoltext,
Expand Down
9 changes: 7 additions & 2 deletions preambles/temps.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,19 @@

\usepackage{tcolorbox}
\usepackage{calc}
\usepackage{amsbsy}

% 数学符号
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\spanspace}{span}

% 网址链接
\if\rendermode1
\NewDocumentCommand{\myhref}{mm}{\href{#1}{#2}}

\NewDocumentCommand{\bilibili}{O{video}m}{\href{https://www.bilibili.com/#1/#2}{\includegraphics[align=c, height=9pt]{figure/bilibiliicon.pdf}}}
\newcommand{\youtube}[1]{\href{https://youtu.be/#1}{\includegraphics[align=c, height=9pt]{figure/youtubeicon.pdf}}}
\NewDocumentCommand{\trforum}{O{threads}m}{\href{https://forums.terraria.org/index.php?/#1/#2}{\includegraphics[align=c, height=9pt]{figure/terrariaforum.png}}}
\NewDocumentCommand{\trforum}{O{threads}m}{\href{https://forums.terraria.org/index.php?#1/#2}{\includegraphics[align=c, height=9pt]{figure/terrariaforum.png}}}
\newcommand{\tieba}[1]{\href{https://tieba.baidu.com/p/#1}{\includegraphics[align=c, height=9pt]{figure/tieba.png}}}
\NewDocumentCommand{\bbstr}{O{t}m}{\href{https://www.bbstr.net/#1/#2}{\includegraphics[align=c, height=9pt]{figure/bbstr.png}}}
\NewDocumentCommand{\github}{m}{\href{https://github.com/#1}{\includegraphics[align=c, height=9pt]{figure/githubicon.pdf}}}
Expand All @@ -29,7 +34,7 @@

\NewDocumentCommand{\bilibili}{O{video}m}{\href{https://www.bilibili.com/#1/#2}{\includegraphics[align=c, height=9pt]{figure/bilibiliicon.pdf}}}
\newcommand{\youtube}[1]{\href{https://youtu.be/#1}{\includegraphics[align=c, height=9pt]{figure/youtubeicon.pdf}}}
\NewDocumentCommand{\trforum}{O{threads}m}{\href{https://forums.terraria.org/index.php?/#1/#2}{\includegraphics[align=c, height=9pt]{figure/terrariaforum.png}}}
\NewDocumentCommand{\trforum}{O{threads}m}{\href{https://forums.terraria.org/index.php?#1/#2}{\includegraphics[align=c, height=9pt]{figure/terrariaforum.png}}}
\newcommand{\tieba}[1]{\href{https://tieba.baidu.com/p/#1}{\includegraphics[align=c, height=9pt]{figure/tieba.png}}}
\NewDocumentCommand{\bbstr}{O{t}m}{\href{https://www.bbstr.net/#1/#2}{\includegraphics[align=c, height=9pt]{figure/bbstr.png}}}
\NewDocumentCommand{\github}{m}{\href{https://github.com/#1}{\includegraphics[align=c, height=9pt]{figure/githubiconnight.png}}}
Expand Down

0 comments on commit cdd8ffd

Please sign in to comment.