source code of the LRA-Diffusion Models for Learning from Noisy Labels.
Install requirements.
pip install -r requirements.txt
- The pre-trianed SimCLR encoder for CIFAR-10 and CIFAR-100 is provided in the model folder.
- CLIP models are available in the python package at here. Install without dependency:
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git --no-dependencies
- For Clothing1M, the pre-trained "Centrality and Consistency" (CC) classification model is also provided.
Trained checkpoints for the diffusion models are available at here.
The noisy labels used in our experiments are provided in folder noisy_label
. The noisy labels are generated following the original paper.
Default values for input arguments are given in the code. An example command is given:
python train_CIFAR.py --device cuda:0 --noise_type cifar10-1-0.35 --fp_encoder SimCLR --nepoch 200 --warmup_epochs 5
The dataset should be downloaded according to the instruction here: Food-101N
Default values for input arguments are given in the code. An example command is given:
python train_Food101N.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024
The dataset should be downloaded according to the instruction here: Clothing1M. Default values for input arguments are given in the code.
The training data is selected by the pre-trained CC classifier. An example command using multiple gpus is given:
python train_Clothing1M.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024
Download WebVision 1.0 and the validation set of ILSVRC2012 datasets. The ImageNet synsets labels for ILSVRC2012 validation set is provided here.
python train_WebVision.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024
@article{chen2024label,
title={Label-retrieval-augmented diffusion models for learning from noisy labels},
author={Chen, Jian and Zhang, Ruiyi and Yu, Tong and Sharma, Rohan and Xu, Zhiqiang and Sun, Tong and Chen, Changyou},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}