-
-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Support arithmetic between Series with dtype list (#17823)
Co-authored-by: Itamar Turner-Trauring <[email protected]>
- Loading branch information
1 parent
fa84fc0
commit 341df85
Showing
7 changed files
with
373 additions
and
24 deletions.
There are no files selected for viewing
177 changes: 177 additions & 0 deletions
177
crates/polars-core/src/series/arithmetic/list_borrowed.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
//! Allow arithmetic operations for ListChunked. | ||
use super::*; | ||
use crate::chunked_array::builder::AnonymousListBuilder; | ||
|
||
/// Given an ArrayRef with some primitive values, wrap it in list(s) until it | ||
/// matches the requested shape. | ||
fn reshape_list_based_on(data: &ArrayRef, shape: &ArrayRef) -> ArrayRef { | ||
if let Some(list_chunk) = shape.as_any().downcast_ref::<LargeListArray>() { | ||
let result = LargeListArray::new( | ||
list_chunk.dtype().clone(), | ||
list_chunk.offsets().clone(), | ||
reshape_list_based_on(data, list_chunk.values()), | ||
list_chunk.validity().cloned(), | ||
); | ||
Box::new(result) | ||
} else { | ||
data.clone() | ||
} | ||
} | ||
|
||
/// Given an ArrayRef, return true if it's a LargeListArrays and it has one or | ||
/// more nulls. | ||
fn does_list_have_nulls(data: &ArrayRef) -> bool { | ||
if let Some(list_chunk) = data.as_any().downcast_ref::<LargeListArray>() { | ||
if list_chunk | ||
.validity() | ||
.map(|bitmap| bitmap.unset_bits() > 0) | ||
.unwrap_or(false) | ||
{ | ||
true | ||
} else { | ||
does_list_have_nulls(list_chunk.values()) | ||
} | ||
} else { | ||
false | ||
} | ||
} | ||
|
||
/// Return whether the left and right have the same shape. We assume neither has | ||
/// any nulls, recursively. | ||
fn lists_same_shapes(left: &ArrayRef, right: &ArrayRef) -> bool { | ||
debug_assert!(!does_list_have_nulls(left)); | ||
debug_assert!(!does_list_have_nulls(right)); | ||
let left_as_list = left.as_any().downcast_ref::<LargeListArray>(); | ||
let right_as_list = right.as_any().downcast_ref::<LargeListArray>(); | ||
match (left_as_list, right_as_list) { | ||
(Some(left), Some(right)) => { | ||
left.offsets() == right.offsets() && lists_same_shapes(left.values(), right.values()) | ||
}, | ||
(None, None) => left.len() == right.len(), | ||
_ => false, | ||
} | ||
} | ||
|
||
impl ListChunked { | ||
/// Helper function for NumOpsDispatchInner implementation for ListChunked. | ||
/// | ||
/// Run the given `op` on `self` and `rhs`. | ||
fn arithm_helper( | ||
&self, | ||
rhs: &Series, | ||
op: &dyn Fn(&Series, &Series) -> PolarsResult<Series>, | ||
has_nulls: Option<bool>, | ||
) -> PolarsResult<Series> { | ||
polars_ensure!( | ||
self.len() == rhs.len(), | ||
InvalidOperation: "can only do arithmetic operations on Series of the same size; got {} and {}", | ||
self.len(), | ||
rhs.len() | ||
); | ||
|
||
let mut has_nulls = has_nulls.unwrap_or(false); | ||
if !has_nulls { | ||
for chunk in self.chunks().iter() { | ||
if does_list_have_nulls(chunk) { | ||
has_nulls = true; | ||
break; | ||
} | ||
} | ||
} | ||
if !has_nulls { | ||
for chunk in rhs.chunks().iter() { | ||
if does_list_have_nulls(chunk) { | ||
has_nulls = true; | ||
break; | ||
} | ||
} | ||
} | ||
if has_nulls { | ||
// A slower implementation since we can't just add the underlying | ||
// values Arrow arrays. Given nulls, the two values arrays might not | ||
// line up the way we expect. | ||
let mut result = AnonymousListBuilder::new( | ||
self.name().clone(), | ||
self.len(), | ||
Some(self.inner_dtype().clone()), | ||
); | ||
let combined = self.amortized_iter().zip(rhs.list()?.amortized_iter()).map(|(a, b)| { | ||
let (Some(a_owner), Some(b_owner)) = (a, b) else { | ||
// Operations with nulls always result in nulls: | ||
return Ok(None); | ||
}; | ||
let a = a_owner.as_ref(); | ||
let b = b_owner.as_ref(); | ||
polars_ensure!( | ||
a.len() == b.len(), | ||
InvalidOperation: "can only do arithmetic operations on lists of the same size; got {} and {}", | ||
a.len(), | ||
b.len() | ||
); | ||
let chunk_result = if let Ok(a_listchunked) = a.list() { | ||
// If `a` contains more lists, we're going to reach this | ||
// function recursively, and again have to decide whether to | ||
// use the fast path (no nulls) or slow path (there were | ||
// nulls). Since we know there were nulls, that means we | ||
// have to stick to the slow path, so pass that information | ||
// along. | ||
a_listchunked.arithm_helper(b, op, Some(true)) | ||
} else { | ||
op(a, b) | ||
}; | ||
chunk_result.map(Some) | ||
}).collect::<PolarsResult<Vec<Option<Series>>>>()?; | ||
for s in combined.iter() { | ||
if let Some(s) = s { | ||
result.append_series(s)?; | ||
} else { | ||
result.append_null(); | ||
} | ||
} | ||
return Ok(result.finish().into()); | ||
} | ||
let l_rechunked = self.clone().rechunk().into_series(); | ||
let l_leaf_array = l_rechunked.get_leaf_array(); | ||
let r_leaf_array = rhs.rechunk().get_leaf_array(); | ||
polars_ensure!( | ||
lists_same_shapes(&l_leaf_array.chunks()[0], &r_leaf_array.chunks()[0]), | ||
InvalidOperation: "can only do arithmetic operations on lists of the same size" | ||
); | ||
|
||
let result = op(&l_leaf_array, &r_leaf_array)?; | ||
|
||
// We now need to wrap the Arrow arrays with the metadata that turns | ||
// them into lists: | ||
// TODO is there a way to do this without cloning the underlying data? | ||
let result_chunks = result.chunks(); | ||
assert_eq!(result_chunks.len(), 1); | ||
let left_chunk = &l_rechunked.chunks()[0]; | ||
let result_chunk = reshape_list_based_on(&result_chunks[0], left_chunk); | ||
|
||
unsafe { | ||
let mut result = | ||
ListChunked::new_with_dims(self.field.clone(), vec![result_chunk], 0, 0); | ||
result.compute_len(); | ||
Ok(result.into()) | ||
} | ||
} | ||
} | ||
|
||
impl NumOpsDispatchInner for ListType { | ||
fn add_to(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> { | ||
lhs.arithm_helper(rhs, &|l, r| l.add_to(r), None) | ||
} | ||
fn subtract(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> { | ||
lhs.arithm_helper(rhs, &|l, r| l.subtract(r), None) | ||
} | ||
fn multiply(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> { | ||
lhs.arithm_helper(rhs, &|l, r| l.multiply(r), None) | ||
} | ||
fn divide(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> { | ||
lhs.arithm_helper(rhs, &|l, r| l.divide(r), None) | ||
} | ||
fn remainder(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> { | ||
lhs.arithm_helper(rhs, &|l, r| l.remainder(r), None) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
mod borrowed; | ||
mod list_borrowed; | ||
mod owned; | ||
|
||
use std::borrow::Cow; | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.