Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

changes submitted by ft on 7.25 #161

Merged
merged 1 commit into from
Aug 2, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 13 additions & 7 deletions hypernetx/algorithms/hypergraph_modularity.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ def modularity(HG, A, wdc=linear):
_df = pd.DataFrame(zip(_keys, _vals), columns=["key", "val"])
_df = _df.groupby(by="key").sum()
EC = sum(
[wdc(k[1], k[0]) * v[0] for (k, v) in _df.iterrows() if k[0] > k[1] / 2]
[wdc(k[1], k[0]) * v.iloc[0] for (k, v) in _df.iterrows() if k[0] > k[1] / 2]
)

## Degree Tax
Expand Down Expand Up @@ -292,6 +292,12 @@ def two_section(HG):
w = 1 / (len(E) - 1)
s.extend([(k[0], k[1], w) for k in itertools.combinations(E, 2)])
G = ig.Graph.TupleList(s, weights=True).simplify(combine_edges="sum")

## add isolates if any
isolates = list(set([v for v in HG.nodes]) - set(G.vs['name']))
if len(isolates)>0:
G.add_vertices(isolates)

return G


Expand Down Expand Up @@ -392,17 +398,17 @@ def _last_step_weighted(H, A, wdc, delta=0.01, verbose=False):
n_moves = 0
for v in list(np.random.permutation(list(H.nodes))):
dct_A_v = dct_A[v]
H_id = [H.incidence_dict[x] for x in H.nodes[v].memberships]
H_id = [H.incidence_dict[x] for x in H.nodes[v]]
L = [[dct_A[i] for i in x] for x in H_id]

## ec portion before move
_keys = [(Counter(l).most_common(1)[0][1], len(l)) for l in L]
_vals = [H.edges[x].weight for x in H.nodes[v].memberships]
_vals = [H.edges[x].weight for x in H.nodes[v]]
_df = pd.DataFrame(zip(_keys, _vals), columns=["key", "val"])
_df = _df.groupby(by="key").sum()
ec = sum(
[
wdc(k[1], k[0]) * val[0]
wdc(k[1], k[0]) * val.iloc[0]
for (k, val) in _df.iterrows()
if k[0] > k[1] / 2
]
Expand All @@ -425,12 +431,12 @@ def _last_step_weighted(H, A, wdc, delta=0.01, verbose=False):
L = [[dct_A[i] for i in x] for x in H_id]
## EC
_keys = [(Counter(l).most_common(1)[0][1], len(l)) for l in L]
_vals = [H.edges[x].weight for x in H.nodes[v].memberships]
_vals = [H.edges[x].weight for x in H.nodes[v]]
_df = pd.DataFrame(zip(_keys, _vals), columns=["key", "val"])
_df = _df.groupby(by="key").sum()
ecp = sum(
[
wdc(k[1], k[0]) * val[0]
wdc(k[1], k[0]) * val.iloc[0]
for (k, val) in _df.iterrows()
if k[0] > k[1] / 2
]
Expand Down Expand Up @@ -491,7 +497,7 @@ def _last_step_unweighted(H, A, wdc, delta=0.01, verbose=False):
n_moves = 0
for v in list(np.random.permutation(list(H.nodes))):
dct_A_v = dct_A[v]
H_id = [H.incidence_dict[x] for x in H.nodes[v].memberships]
H_id = [H.incidence_dict[x] for x in H.nodes[v]]
L = [[dct_A[i] for i in x] for x in H_id]
deg_v = H.degree(v)

Expand Down
Loading