Skip to content

Commit

Permalink
Update 2-case2.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 19, 2024
1 parent 54d5e0c commit 8a60675
Showing 1 changed file with 79 additions and 13 deletions.
92 changes: 79 additions & 13 deletions blueprint/src/chapters/2-case2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@ \chapter{Case 2}
\end{lemma}
\begin{proof}
\leanok
Since $3 \divides a^3 + b^3 = c^3$, then $3 \divides c$.
Then $3 \divides \gcd(a,b,c)$.
By hypothesis we have that $3 \divides a^3 + b^3 = c^3$, which implies that $3 \divides c$,
from which we can conclude that $3 \divides \gcd(a,b,c)$.
\end{proof}

\begin{lemma}
Expand All @@ -28,8 +28,8 @@ \chapter{Case 2}
\end{lemma}
\begin{proof}
\leanok
Since $3 \divides c^3 - a^3 = b^3$, then $3 \divides b$.
Then $3 \divides \gcd(a,b,c)$.
By hypothesis we have that $3 \divides c^3 - a^3 = b^3$, which implies that $3 \divides b$,
from which we can conclude that $3 \divides \gcd(a,b,c)$.
\end{proof}

\begin{lemma}
Expand All @@ -43,8 +43,8 @@ \chapter{Case 2}
\end{lemma}
\begin{proof}
\leanok
Since $3 \divides c^3 - b^3 = a^3$, then $3 \divides a$.
Then $3 \divides \gcd(a,b,c)$.
By hypothesis we have that $3 \divides c^3 - b^3 = a^3$, which implies that $3 \divides a$,
from which we can conclude that $3 \divides \gcd(a,b,c)$.
\end{proof}

\begin{theorem}
Expand All @@ -66,19 +66,19 @@ \chapter{Case 2}
lmm:three_dvd_gcd_of_dvd_a_of_dvd_b,
lmm:three_dvd_gcd_of_dvd_a_of_dvd_c,
lmm:three_dvd_gcd_of_dvd_b_of_dvd_c}
By contradiction we assume that there exist $a,b,c \in \N \smallsetminus \set{0}$
such that $a^3 + b^3 = c^3$. \\
By contradiction we assume that
$$\exists a,b,c \in \N \smallsetminus \set{0} \text{ such that } a^3 + b^3 = c^3.$$
By \Cref{lmm:fermatLastTheoremWith_of_fermatLastTheoremWith_coprime}
we can assume $\gcd(a,b,c)=1$. \\
By \Cref{thm:fermatLastTheoremThree_case_1} we can assume $3 \divides a b c$
from which it follows that $(3 \divides a) \lor (3 \divides b) \lor (3 \divides c)$.\\
we can assume that $\gcd(a,b,c)=1$. \\
By \Cref{thm:fermatLastTheoremThree_case_1} we can assume that $3 \divides a b c$,
from which it follows that $$(3 \divides a) \lor (3 \divides b) \lor (3 \divides c).$$
We proceed by analysing each case:
\begin{itemize}
\item Case $3 \divides a$. \\
Let $a'=-c$, $b'=b$, $c'=-a$, then $3 \divides c'$ and
$$a'\neq 0 \land b'\neq 0 \land c' \neq 0.$$
$$(a'\neq 0) \land (b'\neq 0) \land (c' \neq 0).$$
Then $3 \notdivides a'$ since otherwise by \Cref{lmm:three_dvd_gcd_of_dvd_a_of_dvd_c}
we would have that $3 \divides \gcd(a,b,c)=1$. \\
we would have that $3 \divides \gcd(a,b,c)=1$ which is absurd. \\
Analogously, by \Cref{lmm:three_dvd_gcd_of_dvd_a_of_dvd_b} we have that $3 \notdivides b'$.\\
By contradiction we assume that $\gcd(a',b') \neq 1$ which, by basic divisibility properties,
implies that there is a prime $p$ such that $p \divides a'$ and $p \divides b'$.
Expand Down Expand Up @@ -929,6 +929,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_X}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides X$.
\end{lemma}
Expand All @@ -947,6 +953,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_Y}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides Y$.
\end{lemma}
Expand All @@ -965,6 +977,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_Z}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides Z$.
\end{lemma}
Expand Down Expand Up @@ -1002,6 +1020,12 @@ \chapter{Case 2}
\lean{Solution.formula1}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$ with multiplicity $n$.\\\\
Then $u_1 X^3 \lambda^{3n-2}+u_2 \eta Y^3 \lambda +
u_3 \eta^2 Z^3 \lambda = 0$.
Expand Down Expand Up @@ -1062,6 +1086,12 @@ \chapter{Case 2}
\lean{Solution.formula2}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$ with multiplicity $n$.\\\\
Then $Y^3 + u_4 Z^3 = u_5 (\lambda^(n-1) X)^3$.
\end{lemma}
Expand All @@ -1080,6 +1110,12 @@ \chapter{Case 2}
\lean{Solution.lambda_sq_div_lambda_fourth}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda^2 \divides \lambda^4$.
\end{lemma}
Expand All @@ -1093,6 +1129,12 @@ \chapter{Case 2}
\lean{Solution.lambda_sq_div_new_X_cubed}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$ with multiplicity $n$.\\\\
Then $\lambda^2 \divides u_5 (\lambda^{n - 1} X)^3$.
\end{lemma}
Expand Down Expand Up @@ -1125,6 +1167,12 @@ \chapter{Case 2}
\lean{Solution.final}
\leanok
\uses{def:Solution, def:Solution_u1_u2_u3_u4_u5_X_Y_Z}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$ with multiplicity $n$.\\\\
Then $Y^3 + (u_4 Z)^3 = u_5 (\lambda^{n-1} X)^3$.
\end{lemma}
Expand All @@ -1141,6 +1189,12 @@ \chapter{Case 2}
\uses{def:Solution1, def:Solution_u1_u2_u3_u4_u5_X_Y_Z, lmm:Solution_two_le_multiplicity,
lmm:final, lmm:coprime_Y_Z, lmm:lambda_not_dvd_Y, lmm:lambda_not_dvd_Z, lmm:lambda_ne_zero,
lmm:X_ne_zero}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S = (a,b,c,u)$ be a $solution$ with multiplicity $n$.\\
Let $S_f' = (Y,u_4 Z, \lambda^{n-1} X, u_5)$.\\\\
Then $S_f'$ is a $solution'$.
Expand All @@ -1158,6 +1212,12 @@ \chapter{Case 2}
\leanok
\uses{lmm:lambda_not_dvd_X,
lmm:lambda_ne_zero}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $(a',b',c',u') = S_f'$ be the final $solution'$, then
$\lambda^{n-1} \divides \lambda^{n-1} X = c'$.
By contradiction we assume that $\lambda^n \divides c'$ which implies that $\lambda \divides X$,
Expand Down Expand Up @@ -1198,6 +1258,12 @@ \chapter{Case 2}
\label{thm:fermatLastTheoremForThreeGen}
\lean{fermatLastTheoremForThreeGen}
\leanok
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $a, b, c \in \cc{O}_K$ and $u \in \cc{O}^\times_K$ such that $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $\lambda \notdivides a$, $\lambda \notdivides b$ and $\lambda \divides c$. \\\\
Then $a^3 + b^3 \neq u c^3$.
Expand Down

0 comments on commit 8a60675

Please sign in to comment.