Skip to content

Commit

Permalink
Update 0-introduction.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 15, 2024
1 parent a886b80 commit 6428565
Showing 1 changed file with 25 additions and 1 deletion.
26 changes: 25 additions & 1 deletion blueprint/src/chapters/0-introduction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,12 @@ \chapter{Introduction}
\label{thm:mem}
\lean{IsCyclotomicExtension.Rat.Three.Units.mem}
\leanok
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
Then $u \in \set{1, -1, \eta, -\eta, \eta^2, -\eta^2}$.
\end{theorem}
Expand All @@ -48,7 +54,12 @@ \chapter{Introduction}
\label{thm:not_exists_int_three_dvd_sub}
\lean{IsCyclotomicExtension.Rat.Three.Units.not_exists_int_three_dvd_sub}
\leanok
Let $n \in \Z$. \\\\
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $n \in \cc{O}_K$. \\\\
Then $3 \notdivides \eta - n$.
\end{theorem}
\begin{proof}
Expand All @@ -60,6 +71,12 @@ \chapter{Introduction}
\label{lmm:lambda_sq}
\lean{IsCyclotomicExtension.Rat.Three.lambda_sq}
\leanok
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\\\
$\lambda^2 = -3 \eta$.
\end{lemma}
\begin{proof}
Expand All @@ -75,6 +92,13 @@ \chapter{Introduction}
\label{lmm:eq_one_or_neg_one_of_unit_of_congruent}
\lean{IsCyclotomicExtension.Rat.Three.eq_one_or_neg_one_of_unit_of_congruent}
\leanok
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
If $\exists n \in \Z$ such that $\lambda^2 \divides u - n$, then
$u = 1 \lor u = -1$. \\
This is a special case of the Kummer's Lemma (\Cref{lmm:by_kummer}).
Expand Down

0 comments on commit 6428565

Please sign in to comment.