Skip to content

Commit

Permalink
Merge pull request #5 from perpetual-ml/parallelism
Browse files Browse the repository at this point in the history
improved parallelism
  • Loading branch information
deadsoul44 authored Sep 19, 2024
2 parents 57a5131 + 96cd877 commit ba4e520
Show file tree
Hide file tree
Showing 30 changed files with 2,689 additions and 1,980 deletions.
10 changes: 5 additions & 5 deletions Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "perpetual"
version = "0.3.8"
version = "0.4.0"
edition = "2021"
authors = ["Mutlu Simsek <[email protected]>"]
homepage = "https://perpetual-ml.com"
Expand All @@ -22,11 +22,11 @@ codegen-units = 1
[dependencies]
rayon = "1.8"
thiserror = "1.0"
serde_json = { version = "1.0", features = ["float_roundtrip"] }
serde = { version = "1.0", features = ["derive"] }
rand = "0.8"
serde_json = { version = "1.0.127", features = ["float_roundtrip"] }
serde = { version = "1.0.209", features = ["derive"] }
approx = "0.5"
log = "0.4"
hashbrown = { version = "0.14", features = ["serde", "rayon"] }
rand = "0.8.5"

[dev-dependencies]
criterion = "0.5"
Expand Down
24 changes: 11 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,33 +7,31 @@
[![Python Versions](https://img.shields.io/pypi/pyversions/perpetual.svg?logo=python&logoColor=white)](https://pypi.org/project/perpetual)
[![PyPI Version](https://img.shields.io/pypi/v/perpetual.svg?logo=pypi&logoColor=white)](https://pypi.org/project/perpetual)
[![Crates.io Version](https://img.shields.io/crates/v/perpetual?logo=rust&logoColor=white)](https://crates.io/crates/perpetual)
[![Discord](https://img.shields.io/discord/1247650900214812692?logo=discord&cacheSeconds=10)](https://discord.gg/vADKk9Wr)
[![Static Badge](https://img.shields.io/badge/join-discord-blue?logo=discord)](https://discord.gg/aQmKKUuJ)

</div>

# Perpetual

## _A self-generalizing gradient boosting machine which doesn't need hyperparameter optimization_

PerpetualBooster is a gradient boosting machine (GBM) algorithm which doesn't need hyperparameter optimization unlike other GBM algorithms. Similar to AutoML libraries, it has a `budget` parameter. Increasing the `budget` parameter increases the predictive power of the algorithm and gives better results on unseen data. Start with a small budget (e.g. 1.0) and increase it (e.g. 2.0) once you are confident with your features. If you don't see any improvement with further increasing the `budget`, it means that you are already extracting the most predictive power out of your data.

## Benchmark

Hyperparameter optimization usually takes 100 iterations with plain GBM algorithms. PerpetualBooster achieves the same accuracy in a single run. Thus, it achieves around 100x speed-up at the same accuracy with different `budget` levels and with different datasets. The speed-up might be slightly lower or significantly higher than 100x depending on the dataset.
Hyperparameter optimization usually takes 100 iterations with plain GBM algorithms. PerpetualBooster achieves the same accuracy in a single run. Thus, it achieves up to 100x speed-up at the same accuracy with different `budget` levels and with different datasets.

The following table summarizes the results for the [California Housing](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html) dataset (regression):

| Perpetual budget | LightGBM n_estimators | Perpetual mse | LightGBM mse | Perpetual cpu time | LightGBM cpu time | Speed-up |
| ---------------- | --------------------- | ------------- | ------------ | ------------------ | ----------------- | -------- |
| 1.0 | 100 | 0.192 | 0.192 | 7.6 | 978 | 129x |
| 1.5 | 300 | 0.188 | 0.188 | 21.8 | 3066 | 141x |
| 2.1 | 1000 | 0.185 | 0.186 | 86.0 | 8720 | 101x |
| Perpetual budget | LightGBM n_estimators | Perpetual mse | LightGBM mse | Speed-up wall time | Speed-up cpu time |
| ---------------- | --------------------- | ------------- | ------------ | ------------------ | ----------------- |
| 1.0 | 100 | 0.192 | 0.192 | 54x | 56x |
| 1.5 | 300 | 0.188 | 0.188 | 59x | 58x |
| 2.1 | 1000 | 0.185 | 0.186 | 42x | 41x |

The following table summarizes the results for the [Cover Types](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html) dataset (classification):

| Perpetual budget | LightGBM n_estimators | Perpetual log loss | LightGBM log loss | Perpetual cpu time | LightGBM cpu time | Speed-up |
| ---------------- | --------------------- | ------------------ | ----------------- | ------------------ | ----------------- | -------- |
| 1.0 | 100 | 0.089 | 0.084 | 1653 | 124958 | 76x |
| Perpetual budget | LightGBM n_estimators | Perpetual log loss | LightGBM log loss | Speed-up wall time | Speed-up cpu time |
| ---------------- | --------------------- | ------------------ | ----------------- | ------------------ | ----------------- |
| 0.9 | 100 | 0.091 | 0.084 | 72x | 78x |

You can reproduce the results using the scripts in the [examples](./python-package/examples) folder.

Expand Down Expand Up @@ -63,7 +61,7 @@ pip install perpetual
To use in a Rust project, add the following to your Cargo.toml file to get the package from [crates.io](https://crates.io/crates/perpetual).

```toml
perpetual = "0.3.8"
perpetual = "0.4.0"
```

## Paper
Expand Down
48 changes: 27 additions & 21 deletions benches/perpetual_benchmarks.rs
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use hashbrown::HashMap;
use perpetual::binning::bin_matrix;
use perpetual::booster::PerpetualBooster;
use perpetual::constants::N_NODES_ALLOCATED;
use perpetual::constraints::ConstraintMap;
use perpetual::data::Matrix;
use perpetual::histogram::HistogramMatrix;
use perpetual::histogram::{NodeHistogram, NodeHistogramOwned};
use perpetual::objective::{LogLoss, ObjectiveFunction};
use perpetual::splitter::MissingImputerSplitter;
use perpetual::splitter::{MissingImputerSplitter, SplitInfo, SplitInfoSlice};
use perpetual::tree::Tree;
use perpetual::utils::{fast_f64_sum, fast_sum, naive_sum};
use std::fs;
Expand All @@ -34,22 +33,26 @@ pub fn tree_benchmarks(c: &mut Criterion) {
});

let data = Matrix::new(&data_vec, y.len(), 5);
let splitter = MissingImputerSplitter {
eta: 0.3,
allow_missing_splits: true,
constraints_map: ConstraintMap::new(),
};
let splitter = MissingImputerSplitter::new(0.3, true, ConstraintMap::new());
let mut tree = Tree::new();

let bindata = bin_matrix(&data, None, 300, f64::NAN, None).unwrap();
let bdata = Matrix::new(&bindata.binned_data, data.rows, data.cols);
let col_index: Vec<usize> = (0..data.cols).collect();

let hist_init = HistogramMatrix::empty(&bdata, &bindata.cuts, &col_index, true, false);
let mut hist_map: HashMap<usize, HistogramMatrix> = HashMap::with_capacity(N_NODES_ALLOCATED);
for i in 0..N_NODES_ALLOCATED {
hist_map.insert(i, hist_init.clone());
}
let mut hist_tree_owned: Vec<NodeHistogramOwned> = (0..N_NODES_ALLOCATED)
.map(|_| NodeHistogramOwned::empty(&bindata.cuts, &col_index, false, true))
.collect();

let mut hist_tree: Vec<NodeHistogram> = hist_tree_owned
.iter_mut()
.map(|node_hist| NodeHistogram::from_owned(node_hist))
.collect();

let pool = rayon::ThreadPoolBuilder::new().num_threads(2).build().unwrap();

let mut split_info_vec: Vec<SplitInfo> = (0..col_index.len()).map(|_| SplitInfo::default()).collect();
let split_info_slice = SplitInfoSlice::new(&mut split_info_vec);

tree.fit(
&bdata,
Expand All @@ -58,7 +61,7 @@ pub fn tree_benchmarks(c: &mut Criterion) {
&mut g,
h.as_deref_mut(),
&splitter,
true,
&pool,
Some(f32::MAX),
&loss,
&y,
Expand All @@ -67,8 +70,9 @@ pub fn tree_benchmarks(c: &mut Criterion) {
None,
None,
false,
&mut hist_map,
&mut hist_tree,
None,
&split_info_slice,
);

println!("{}", tree.nodes.len());
Expand All @@ -83,7 +87,7 @@ pub fn tree_benchmarks(c: &mut Criterion) {
black_box(&mut g),
black_box(h.as_deref_mut()),
black_box(&splitter),
black_box(false),
black_box(&pool),
Some(f32::MAX),
black_box(&loss),
black_box(&y),
Expand All @@ -92,8 +96,9 @@ pub fn tree_benchmarks(c: &mut Criterion) {
None,
None,
false,
black_box(&mut hist_map),
black_box(&mut hist_tree),
None,
black_box(&split_info_slice),
);
})
});
Expand All @@ -108,7 +113,7 @@ pub fn tree_benchmarks(c: &mut Criterion) {
black_box(&mut g),
black_box(h.as_deref_mut()),
black_box(&splitter),
black_box(false),
black_box(&pool),
Some(f32::MAX),
black_box(&loss),
black_box(&y),
Expand All @@ -117,8 +122,9 @@ pub fn tree_benchmarks(c: &mut Criterion) {
None,
None,
false,
black_box(&mut hist_map),
black_box(&mut hist_tree),
None,
black_box(&split_info_slice),
);
})
});
Expand All @@ -137,7 +143,7 @@ pub fn tree_benchmarks(c: &mut Criterion) {
// booster_train.sampling_mode(SamplingMode::Linear);
booster_train.bench_function("train_booster_default", |b| {
b.iter(|| {
let mut booster = PerpetualBooster::default().set_parallel(false);
let mut booster = PerpetualBooster::default();
booster
.fit(
black_box(&data),
Expand All @@ -153,7 +159,7 @@ pub fn tree_benchmarks(c: &mut Criterion) {
});
booster_train.bench_function("train_booster_with_column_sampling", |b| {
b.iter(|| {
let mut booster = PerpetualBooster::default().set_parallel(false);
let mut booster = PerpetualBooster::default();
booster
.fit(
black_box(&data),
Expand Down
17 changes: 13 additions & 4 deletions examples/cal_housing.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
//! An example using the `california housing` dataset
// cargo run --release --example cal_housing 0.1 0.3 2
// cargo run --release --example cal_housing 1.0 1

// cargo build --release --example cal_housing
// hyperfine --runs 3 ./target/release/examples/cal_housing
Expand All @@ -14,6 +14,7 @@ use perpetual::{objective::Objective, Matrix, PerpetualBooster};
use polars::prelude::*;
use std::env;
use std::error::Error;
use std::time::SystemTime;

pub fn mse(y_test: &[f64], y_pred: &[f64]) -> f32 {
let mut error = 0.0;
Expand All @@ -26,7 +27,8 @@ pub fn mse(y_test: &[f64], y_pred: &[f64]) -> f32 {

fn main() -> Result<(), Box<dyn Error>> {
let args: Vec<String> = env::args().collect();
let budget = &args[1].parse::<f32>().unwrap();
let budget = &args[1].parse::<f32>().unwrap_or(1.0);
let num_threads = &args[2].parse::<usize>().unwrap_or(1);

let all_names = [
"MedInc".to_string(),
Expand Down Expand Up @@ -116,8 +118,13 @@ fn main() -> Result<(), Box<dyn Error>> {
// To provide parameters generate a default booster, and then use
// the relevant `set_` methods for any parameters you would like to
// adjust.
let mut model = PerpetualBooster::default().set_objective(Objective::SquaredLoss);
let mut model = PerpetualBooster::default()
.set_objective(Objective::SquaredLoss)
.set_num_threads(Some(*num_threads));

let now = SystemTime::now();
model.fit(&matrix_train, &y_train, None, None, *budget, None, None)?;
println!("now.elapsed: {:?}", now.elapsed().unwrap().as_secs_f32());

let trees = model.get_prediction_trees();
println!("n_rounds: {:?}", trees.len());
Expand All @@ -134,7 +141,9 @@ fn main() -> Result<(), Box<dyn Error>> {
println!("mse_test: {:?}", error);

println!("tree:");
println!("{}", trees[0]);
for t in trees {
println!("{}", t);
}

Ok(())
}
4 changes: 2 additions & 2 deletions python-package/Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "py-perpetual"
version = "0.3.8"
version = "0.4.0"
edition = "2021"
authors = ["Mutlu Simsek <[email protected]>"]
homepage = "https://perpetual-ml.com"
Expand All @@ -19,7 +19,7 @@ crate-type = ["cdylib", "rlib"]

[dependencies]
pyo3 = { version = "0.21", features = ["extension-module"] }
perpetual_rs = {package="perpetual", version = "0.3.8", path = "../" }
perpetual_rs = {package="perpetual", version = "0.4.0", path = "../" }
numpy = "0.21"
ndarray = "0.15"
serde_plain = { version = "1.0" }
Expand Down
2 changes: 1 addition & 1 deletion python-package/examples/benchmark_lgbm.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def objective_function(

if __name__ == "__main__":
optuna.logging.set_verbosity(optuna.logging.WARNING)
cal_housing = False # True -> California Housing, False -> Cover Types
cal_housing = True # True -> California Housing, False -> Cover Types
n_estimators = 100
n_trials = 100
cpu_times = []
Expand Down
10 changes: 6 additions & 4 deletions python-package/examples/benchmark_perpetual.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,9 @@ def prepare_data(cal_housing, seed):


if __name__ == "__main__":
budget = 1.1
parallel = False
cal_housing = False # True -> California Housing, False -> Cover Types
budget = 1.0
num_threads = 2
cal_housing = True # True -> California Housing, False -> Cover Types
cpu_times = []
wall_times = []
metrics = []
Expand All @@ -36,7 +36,9 @@ def prepare_data(cal_housing, seed):
prepare_data(cal_housing, seed)
)

model = PerpetualBooster(objective=objective, parallel=parallel)
model = PerpetualBooster(
objective=objective, num_threads=num_threads, log_iterations=0
)

start = process_time()
tick = time()
Expand Down
5 changes: 2 additions & 3 deletions python-package/examples/categorical_data.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
"import numpy as np\n",
"import pandas as pd\n",
"from ucimlrepo import fetch_ucirepo\n",
"from perpetual import PerpetualBooster\n",
"from scipy.special import expit\n",
"from lightgbm import LGBMClassifier\n",
"from sklearn.metrics import log_loss, accuracy_score\n",
Expand Down Expand Up @@ -217,10 +216,10 @@
"outputs": [],
"source": [
"print(f\"Number of finished trials: {len(study.trials)}\")\n",
"print(f\"Best trial:\")\n",
"print(\"Best trial:\")\n",
"print(f\" Number: {study.best_trial.number}\")\n",
"print(f\" Value: {study.best_trial.value}\")\n",
"print(f\" Params: \")\n",
"print(\" Params: \")\n",
"for key, value in study.best_trial.params.items():\n",
" print(f\" {key}: {value}\")"
]
Expand Down
4 changes: 2 additions & 2 deletions python-package/examples/performance_benchmark.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -163,10 +163,10 @@
"outputs": [],
"source": [
"print(f\"Number of finished trials: {len(study.trials)}\")\n",
"print(f\"Best trial:\")\n",
"print(\"Best trial:\")\n",
"print(f\" Number: {study.best_trial.number}\")\n",
"print(f\" Value: {study.best_trial.value}\")\n",
"print(f\" Params: \")\n",
"print(\" Params: \")\n",
"for key, value in study.best_trial.params.items():\n",
" print(f\" {key}: {value}\")"
]
Expand Down
2 changes: 1 addition & 1 deletion python-package/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "maturin"

[project]
name = "perpetual"
version = "0.3.8"
version = "0.4.0"
description = "A self-generalizing gradient boosting machine which doesn't need hyperparameter optimization"
license = { file = "LICENSE" }
keywords = [
Expand Down
Loading

0 comments on commit ba4e520

Please sign in to comment.