- Links for annotations of MCTest and SQuAD that are reported in Sugawara and Aizawa (2016) and Sugawara et al. (2017)
- Per-question(option) results of two RC systems in MCTest (dev)
- https://docs.google.com/spreadsheets/d/1yHt8IcPz2Nxrc_Mk_wMIxH3uL7pFHj_jLee4OWD12Sw/edit?usp=sharing
- Baseline and Yin ABCNN:
mc{160,500}.dev_{baseline,habcnn}.results
in this repository - Smith et al. (2015) RTE/NoRTE systems: https://github.com/elleryjsmith/UCLMCTest
- https://docs.google.com/spreadsheets/d/1sSJBhC9AiokAJ4nx_O7J1MUh2SuA3gbOxX-lQ__SQX4/edit?usp=sharing
- in Sugawara and Aizawa (2016)
- MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text
- A Strong Lexical Matching Method for the Machine Comprehension Test
- Attention-Based Convolutional Neural Network for Machine Comprehension
- Yin et al. (2016)
- https://arxiv.org/abs/1602.04341
- SQuAD: 100,000+ Questions for Machine Comprehension of Text
- Rajpurkar et al. (2016)
- https://arxiv.org/abs/1606.05250
- https://stanford-qa.com/
- An Analysis of Prerequisite Skills for Reading Comprehension
- Sugawara and Aizawa (2016)
- http://aclweb.org/anthology/W/W16/W16-6001.pdf
- Prerequisite Skills for Reading Comprehension: Multi-perspective Analysis of MCTest Datasets and Systems
- Sugawara et al. (2017)
- http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14614/14082