-
Notifications
You must be signed in to change notification settings - Fork 272
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
unstructured data processing (#4584)
* initial commit * apply suggestions * lint * mypy * use udfs * changelog * doc test * black * add deps to toml * unstructured as extra * use unicodedata * import inside func * disable test for extra * move to llm-app * endline * clean * flake8 * undo flake(conflict with black) GitOrigin-RevId: 893f531ff2cfc7ba6c2421fa9375703fcd09b561
- Loading branch information
Mohamed Malhou
authored and
Manul from Pathway
committed
Sep 19, 2023
1 parent
5740fe2
commit 3cf03c1
Showing
11 changed files
with
2,434 additions
and
524 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .app import run | ||
|
||
__all__ = ["run"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
""" | ||
Microservice for a context-aware ChatGPT assistant. | ||
The following program reads in a collection of documents, | ||
embeds each document using the OpenAI document embedding model, | ||
then builds an index for fast retrieval of documents relevant to a question, | ||
effectively replacing a vector database. | ||
The program then starts a REST API endpoint serving queries about programming in Pathway. | ||
Each query text is first turned into a vector using OpenAI embedding service, | ||
then relevant documentation pages are found using a Nearest Neighbor index computed | ||
for documents in the corpus. A prompt is build from the relevant documentations pages | ||
and sent to the OpenAI GPT-4 chat service for processing. | ||
Usage: | ||
In the root of this repository run: | ||
`poetry run ./run_examples.py unstruct` | ||
or, if all dependencies are managed manually rather than using poetry | ||
`python examples/pipelines/unstructured/app.py` | ||
You can also run this example directly in the environment with llm_app installed. | ||
On another terminal, navigate to `examples/pipelines/unstructured/ui` and run | ||
`streamlit run server.py`. You can interact with the app at `localhost:8501` | ||
""" | ||
|
||
import os | ||
|
||
import pathway as pw | ||
from pathway.stdlib.ml.index import KNNIndex | ||
|
||
from llm_app import chunk_texts, extract_texts | ||
from llm_app.model_wrappers import OpenAIChatGPTModel, OpenAIEmbeddingModel | ||
|
||
|
||
class DocumentInputSchema(pw.Schema): | ||
doc: str | ||
|
||
|
||
class QueryInputSchema(pw.Schema): | ||
query: str | ||
user: str | ||
|
||
|
||
def run( | ||
*, | ||
data_dir: str = os.environ.get("PATHWAY_DATA_DIR", "./examples/data/finance/"), | ||
api_key: str = os.environ.get("OPENAI_API_TOKEN", ""), | ||
host: str = "0.0.0.0", | ||
port: int = 8080, | ||
embedder_locator: str = "text-embedding-ada-002", | ||
embedding_dimension: int = 1536, | ||
model_locator: str = "gpt-3.5-turbo", | ||
max_tokens: int = 300, | ||
temperature: float = 0.0, | ||
**kwargs, | ||
): | ||
embedder = OpenAIEmbeddingModel(api_key=api_key) | ||
|
||
files = pw.io.fs.read( | ||
data_dir, | ||
mode="streaming", | ||
format="binary", | ||
autocommit_duration_ms=50, | ||
) | ||
documents = files.select(texts=extract_texts(pw.this.data)) | ||
documents = documents.select(chunks=chunk_texts(pw.this.texts)) | ||
documents = documents.flatten(pw.this.chunks).rename_columns(chunk=pw.this.chunks) | ||
|
||
enriched_documents = documents + documents.select( | ||
vector=embedder.apply(text=pw.this.chunk, locator=embedder_locator) | ||
) | ||
|
||
index = KNNIndex( | ||
enriched_documents.vector, enriched_documents, n_dimensions=embedding_dimension | ||
) | ||
|
||
query, response_writer = pw.io.http.rest_connector( | ||
host=host, | ||
port=port, | ||
schema=QueryInputSchema, | ||
autocommit_duration_ms=50, | ||
) | ||
|
||
query += query.select( | ||
vector=embedder.apply(text=pw.this.query, locator=embedder_locator), | ||
) | ||
|
||
query_context = query + index.get_nearest_items( | ||
query.vector, k=3, collapse_rows=True | ||
).select(documents_list=pw.this.chunk).promise_universe_is_equal_to(query) | ||
|
||
@pw.udf | ||
def build_prompt(documents, query): | ||
docs_str = "\n".join(documents) | ||
prompt = f"Given the following documents : \n {docs_str} \nanswer this query: {query}" | ||
return prompt | ||
|
||
prompt = query_context.select( | ||
prompt=build_prompt(pw.this.documents_list, pw.this.query) | ||
) | ||
|
||
model = OpenAIChatGPTModel(api_key=api_key) | ||
|
||
responses = prompt.select( | ||
query_id=pw.this.id, | ||
result=model.apply( | ||
pw.this.prompt, | ||
locator=model_locator, | ||
temperature=temperature, | ||
max_tokens=max_tokens, | ||
), | ||
) | ||
|
||
response_writer(responses) | ||
|
||
pw.run() | ||
|
||
|
||
if __name__ == "__main__": | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import os | ||
|
||
import requests | ||
import streamlit as st | ||
from dotenv import load_dotenv | ||
|
||
with st.sidebar: | ||
st.markdown( | ||
"[View the source code on GitHub](https://github.com/pathwaycom/llm-app)" | ||
) | ||
|
||
# Load environment variables | ||
load_dotenv() | ||
api_host = os.environ.get("PATHWAY_REST_CONNECTOR_HOST", "127.0.0.1") | ||
api_port = int(os.environ.get("PATHWAY_REST_CONNECTOR_PORT", 8080)) | ||
data_path = "../../../../examples/data/finance/" | ||
|
||
# Streamlit UI elements | ||
st.title("LLM App") | ||
|
||
uploaded_files = st.file_uploader("Upload a text file", accept_multiple_files=True) | ||
if uploaded_files: | ||
for file in uploaded_files: | ||
print(file.name) | ||
with open(os.path.join(data_path, file.name), "wb") as f: | ||
f.write(file.read()) | ||
|
||
# Initialize chat history | ||
if "messages" not in st.session_state: | ||
st.session_state.messages = [] | ||
|
||
# Display chat messages from history on app rerun | ||
for message in st.session_state.messages: | ||
with st.chat_message(message["role"]): | ||
st.markdown(message["content"]) | ||
|
||
|
||
# React to user input | ||
if prompt := st.chat_input("How can I help you today?"): | ||
# Display user message in chat message container | ||
with st.chat_message("user"): | ||
st.markdown(prompt) | ||
|
||
# Add user message to chat history | ||
st.session_state.messages.append({"role": "user", "content": prompt}) | ||
|
||
url = f"http://{api_host}:{api_port}/" | ||
data = {"query": prompt, "user": "user"} | ||
|
||
response = requests.post(url, json=data) | ||
|
||
if response.status_code == 200: | ||
response = response.json() | ||
with st.chat_message("assistant"): | ||
st.markdown(response) | ||
st.session_state.messages.append({"role": "assistant", "content": response}) | ||
else: | ||
st.error( | ||
f"Failed to send data to Discounts API. Status code: {response.status_code}" | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
from llm_app import model_wrappers as model_wrappers | ||
from llm_app.processing import chunk_texts, extract_texts | ||
|
||
__all__ = ["model_wrappers"] | ||
__all__ = ["model_wrappers", "extract_texts", "chunk_texts"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import logging | ||
import unicodedata | ||
from io import BytesIO | ||
|
||
import pathway as pw | ||
|
||
CHARS_PER_TOKEN = 3 | ||
PUNCTUATION = [".", "?", "!", "\n"] | ||
|
||
|
||
@pw.udf | ||
def chunk_texts( | ||
texts: str | list[str], | ||
min_tokens: int = 50, | ||
max_tokens: int = 500, | ||
encoding_name: str = "cl100k_base", | ||
) -> list[str]: | ||
""" | ||
Splits a given string or a list of strings into chunks based on token | ||
count. | ||
This function tokenizes the input texts and splits them into smaller parts ("chunks") | ||
ensuring that each chunk has a token count between `min_tokens` and | ||
`max_tokens`. It also attempts to break chunks at sensible points such as | ||
punctuation marks. | ||
Arguments: | ||
texts: string or list of strings. | ||
min_tokens: minimum tokens in a chunk of text. | ||
max_tokens: maximum size of a chunk in tokens. | ||
encoding_name: name of the encoding from tiktoken. | ||
Example: | ||
# >>> from pathway.stdlib.ml import chunk_texts | ||
# >>> import pathway as pw | ||
# >>> t = pw.debug.table_from_markdown( | ||
# ... '''| text | ||
# ... 1| cooltext''' | ||
# ... ) | ||
# >>> t += t.select(chunks = chunk_texts(pw.this.text, min_tokens=1, max_tokens=1)) | ||
# >>> pw.debug.compute_and_print(t, include_id=False) | ||
# text | chunks | ||
# cooltext | ('cool', 'text') | ||
""" | ||
import tiktoken | ||
|
||
if not isinstance(texts, str): | ||
texts = "\n".join(texts) | ||
|
||
tokenizer = tiktoken.get_encoding(encoding_name) | ||
text: str = texts | ||
text = normalize_unicode(text) | ||
tokens = tokenizer.encode_ordinary(text) | ||
output = [] | ||
i = 0 | ||
while i < len(tokens): | ||
chunk_tokens = tokens[i : i + max_tokens] | ||
chunk = tokenizer.decode(chunk_tokens) | ||
last_punctuation = max([chunk.rfind(p) for p in PUNCTUATION], default=-1) | ||
if last_punctuation != -1 and last_punctuation > CHARS_PER_TOKEN * min_tokens: | ||
chunk = chunk[: last_punctuation + 1] | ||
|
||
i += len(tokenizer.encode_ordinary(chunk)) | ||
|
||
output.append(chunk) | ||
return output | ||
|
||
|
||
def normalize_unicode(text: str): | ||
""" | ||
Get rid of ligatures | ||
""" | ||
return unicodedata.normalize("NFKC", text) | ||
|
||
|
||
@pw.udf | ||
def extract_texts(data: bytes) -> list[str]: | ||
""" | ||
Extract text elements from binary data using the partition function from | ||
unstructured-io. | ||
Visit [unstructured-io](https://unstructured-io.github.io/unstructured/) to know | ||
more. | ||
Arguments: | ||
data (bytes): Binary data representing the text format file. | ||
Returns: | ||
list[str]: A list of extracted text elements. | ||
Example | ||
# >>> from pathway.stdlib.ml import extract_texts | ||
# >>> import pathway as pw | ||
# >>> t = pw.debug.table_from_markdown( | ||
# ... '''| text | ||
# ... 1| cooltext''' | ||
# ... ) | ||
# >>> t += t.select(bytes = pw.apply(str.encode, pw.this.text)) | ||
# >>> t = t.select(decoded=extract_texts(pw.this.bytes)) | ||
# >>> pw.debug.compute_and_print(t, include_id=False) | ||
# decoded | ||
# ('cooltext',) | ||
""" | ||
from unstructured.partition.auto import partition | ||
|
||
file_like = BytesIO(data) | ||
try: | ||
elements = partition(file=file_like) | ||
texts = [element.text for element in elements] | ||
except ValueError as ve: | ||
logging.error(f"Value Error: {str(ve)}") | ||
return [] | ||
except Exception as e: | ||
logging.exception(f"An unexpected error occurred: {str(e)}") | ||
return [] | ||
return texts |
Oops, something went wrong.