Skip to content

passiona2z/RE_ViT

Repository files navigation

Reproducibility Project

  • Our experiments using PyTorch and Hugging Face frameworks

Replication experiments

Replication, Resolution adjustment, Data sampling, Domain shifting

ViT

  • Replication, Resolution adjustment
    • accelerate launch vit_ddp.py
      • (parser setting) resolution : 512~64
  • Data sampling
    • accelerate launch vit_ddp_sampling.py
      • (parser setting) dataset_ex : True / dataset_ratio : 1.0~0.1
  • Domain shifting
    • accelerate launch vit_ddp_domain.py
      • (parser setting) dataset_name

BiT(ResNet)

  • Replication, Resolution adjustment
    • accelerate launch bit_ddp.py
      • (parser setting) resolution : 512~64
  • Data sampling
    • accelerate launch bit_ddp_sampling.py
      • (parser setting) dataset_ex : True / dataset_ratio : 1.0~0.1
  • Domain shifting
    • accelerate launch bit_ddp_domain.py
      • (parser setting) dataset_name

Ablation and Parameter Study

  • study/vit_ablation.ipynb
  • study/vit_parameter_stduy.ipynb
  • study/visualization.ipynb
    • visualize : linear projection, Positional embedding, Tranformer attention matrix
  • study/vit.py
    • main file which selects vit model and train the model.
    • vit2_1.py : SGD optimizer, cosine learning rate decay (Replication original model)
    • vit4.py, vit_4_1.py : adam optimizer
    • vit5.py: SGD optimizer, linear learning rate decay
    • vit6.py: SGD optimizer, exponential learning rate decay
    • vit7.py: SGD optimizer, ReduceLROnPlateau learning rate decay
  • study/model_with_positional_embedding.py, study/model_without_positional_embedding.py
    • model files are separated with two kinds, one is the model with adding positional embedding and the other is the model without adding positional embedding.
  • study/patchdata.py
    • patchdata file make patches according to size of image and patch.
  • study/test.py
    • test file derives accuracy and loss from test data.

About

Deep Learning : Reproducibility Project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published