- Our experiments using PyTorch and Hugging Face frameworks
- Replication, Resolution adjustment
- accelerate launch vit_ddp.py
- (parser setting) resolution : 512~64
- accelerate launch vit_ddp.py
- Data sampling
- accelerate launch vit_ddp_sampling.py
- (parser setting) dataset_ex : True / dataset_ratio : 1.0~0.1
- accelerate launch vit_ddp_sampling.py
- Domain shifting
- accelerate launch vit_ddp_domain.py
- (parser setting) dataset_name
- accelerate launch vit_ddp_domain.py
- Replication, Resolution adjustment
- accelerate launch bit_ddp.py
- (parser setting) resolution : 512~64
- accelerate launch bit_ddp.py
- Data sampling
- accelerate launch bit_ddp_sampling.py
- (parser setting) dataset_ex : True / dataset_ratio : 1.0~0.1
- accelerate launch bit_ddp_sampling.py
- Domain shifting
- accelerate launch bit_ddp_domain.py
- (parser setting) dataset_name
- accelerate launch bit_ddp_domain.py
- study/vit_ablation.ipynb
- study/vit_parameter_stduy.ipynb
- study/visualization.ipynb
- visualize : linear projection, Positional embedding, Tranformer attention matrix
- study/vit.py
- main file which selects vit model and train the model.
- vit2_1.py : SGD optimizer, cosine learning rate decay (Replication original model)
- vit4.py, vit_4_1.py : adam optimizer
- vit5.py: SGD optimizer, linear learning rate decay
- vit6.py: SGD optimizer, exponential learning rate decay
- vit7.py: SGD optimizer, ReduceLROnPlateau learning rate decay
- study/model_with_positional_embedding.py, study/model_without_positional_embedding.py
- model files are separated with two kinds, one is the model with adding positional embedding and the other is the model without adding positional embedding.
- study/patchdata.py
- patchdata file make patches according to size of image and patch.
- study/test.py
- test file derives accuracy and loss from test data.