Skip to content

Commit

Permalink
Acquire location of interest features from OpenStreetMaps (OSM)
Browse files Browse the repository at this point in the history
  • Loading branch information
amotl committed Aug 28, 2023
1 parent de7c992 commit 22ff60a
Show file tree
Hide file tree
Showing 2 changed files with 284 additions and 0 deletions.
1 change: 1 addition & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,4 @@
- Process HAFAS remarks
- Add colored terminal output
- Parse date-/time-range expressions using the Aika library
- Acquire location of interest information (features) from OpenStreetMaps (OSM)
283 changes: 283 additions & 0 deletions rex9/osm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
"""
Use OSM to find spots (amenities, features) of interest within walking distance.
Setup:
pip install geopandas networkx osmnx pandas scikit-learn shapely
Resources:
- https://wiki.openstreetmap.org/wiki/Key:amenity
- https://github.com/gboeing/osmnx-examples/blob/v0.13.0/notebooks/13-isolines-isochrones.ipynb
- https://stackoverflow.com/questions/62789846/isochrones-with-osmnx
- https://github.com/gboeing/osmnx/issues/992
"""

import typing as t

import geopandas as gpd
import networkx as nx
import numpy as np
import osmnx as ox
from osmnx import features_from_polygon
from shapely import MultiPolygon
from shapely.geometry import Point, Polygon
from shapely.geometry.base import BaseGeometry


def setup():
# pd.set_option("display.max_colwidth", 35)
# pd.set_option('display.max_columns', 12)

# ox.settings.log_console = True
ox.settings.use_cache = True


TagsDict = t.Dict[str, t.Union[str, t.List[str]]]


class LocationFeatures:
"""
Acquire location features from OSM, into a GeoDataFrame.
"""

# For distance calculations, convert geometries to a coordinate system based on linear units (meters).
# https://www.tomasbeuzen.com/python-for-geospatial-analysis/chapters/chapter1_intro-to-spatial.html
crs_osm_default = ox.settings.default_crs # EPSG:4326
crs_metric = "EPSG:3347"

# OSM features responses return many details. Let's skip a bunch of them.
skip_columns = [
# Restaurants
"toilets:wheelchair",
"wheelchair",
"wheelchair:description",
"wheelchair:description:de",
"indoor_seating",
"outdoor_seating",
"delivery",
"takeaway",
"building",
"diet:vegetarian",
"drive_in",
"internet_access:fee",
"reservation",
"smoking",
"website",
"nodes",
"brand",
"brand:wikidata",
"brand:wikipedia",
"operator",
# Toilets
"access",
"changing_table",
"toilets:disposal",
"unisex",
]

# Define a list of columns for a compact representation of the list of features.
primary_columns = ["amenity", "cuisine", "name", "geometry", "address", "fee", "opening_hours"]
very_compact_columns = ["distance", "amenity", "cuisine", "name", "address"]

def __init__(self, center: Point, geometry: BaseGeometry, with_distance: bool = False):
self.center = center
self.geometry = geometry
self.with_distance = with_distance

# The OSM features, stored within a GeoDataFrame.
self.features: t.Optional[gpd.GeoDataFrame] = None

# Sanity checks.
if not isinstance(self.geometry, (Polygon, MultiPolygon)):
raise TypeError(f"Unable to compute features for geometry type: {type(self.geometry)}")

def acquire(self, tags: TagsDict) -> None:
"""
Query OSM Overpass API for features / tags.
"""
assert isinstance(self.geometry, (Polygon, MultiPolygon))

# Query OSM.
self.features = features_from_polygon(self.geometry, tags=tags)

# Some features are returned as polygons, like public toilet houses.
# Just use the center coordinates, for a more compact representation.
self.features["geometry"] = (
self.features["geometry"].to_crs(self.crs_metric).centroid.to_crs(self.crs_osm_default)
)

# Converge address columns into a single one.
self.compress_address()

more_columns = self.features.columns.difference(self.primary_columns)
f1 = gpd.GeoDataFrame(self.features, columns=self.primary_columns)
f2 = gpd.GeoDataFrame(self.features, columns=more_columns)
self.features = f1.join(f2)

# Add a `distance` column, and sort data frame correspondingly.
if self.with_distance:
self.add_distance()

def compress_address(self):
"""
Compress address columns into single column.
"""
features = self.features
try:
features["address"] = (
features["addr:street"]
+ " "
+ features["addr:housenumber"]
+ ", "
+ features["addr:postcode"]
+ " "
+ features["addr:city"]
+ ", "
+ features["phone"]
)
features = features.drop(
columns=["addr:street", "addr:housenumber", "addr:postcode", "addr:city", "addr:country", "phone"]
)
# features["address"] = features["address"].str.wrap(20)
except:
features["address"] = np.NaN
self.features = features

def add_distance(self) -> None:
"""
Add a `distance` column, unit is meters, truncate to integer, and sort ascending.
"""
center = gpd.points_from_xy([self.center.x], [self.center.y], crs=self.crs_osm_default).to_crs(self.crs_metric)
self.features.insert(
0, "distance", center.distance(self.features["geometry"].to_crs(self.crs_metric)).astype("int")
)
self.features = self.features.sort_values("distance")

@property
def full(self) -> gpd.GeoDataFrame:
"""
Return the full GeoDataFrame.
"""
if self.features is None:
return gpd.GeoDataFrame()
else:
return self.features

@property
def compact(self) -> gpd.GeoDataFrame:
# Skip a bunch of columns for a more compact representation.
return self.full.drop(columns=self.skip_columns, errors="ignore")

@property
def very_compact(self) -> gpd.GeoDataFrame:
"""
Return a compact representation of the data frame, defined by the list in `compact_columns`.
Also drop the data frame index.
"""
features = self.compact
try:
features = features[self.very_compact_columns]
# return gpd.GeoDataFrame(self.features, columns=self.compact_columns)
# return self.features[self.features.columns.intersection(take_columns)]
except KeyError:
pass
return features.reset_index(drop=True)

@property
def super_compact(self) -> gpd.GeoDataFrame:
"""
Use the compact representation, and additionally omit the `address` column.
:return:
"""
df = self.very_compact
try:
df = df.drop(columns=["address"])
pass
except:
pass
return df


class LocationOfInterest:
def __init__(self, center: Point):
self.center = center
self.geometry: t.Optional[Polygon] = None
self.queries: t.Dict[str, t.Dict] = {}
self.configure_queries()

def configure_queries(self):
water = ["drinking_water", "shower", "water_point", "watering_place"]
toilets_primary = ["toilets"]
toilets_culture = ["cinema", "community_centre", "exhibition_centre", "library", "theatre", "university"]
food = [
"bar",
"biergarten",
"cafe",
"fast_food",
"food_court",
"ice_cream",
"internet_cafe",
"nightclub",
"pub",
"restaurant",
]
self.queries["water"] = {"amenity": water}
self.queries["food"] = {"amenity": food}
self.queries["toilet"] = {"amenity": toilets_primary + toilets_culture}

def compute_isochrone(self, walk_time=5, speed=4.5):
"""
https://stackoverflow.com/questions/62789846/isochrones-with-osmnx
"""
loc = (self.center.y, self.center.x)
G = ox.graph_from_point(loc, simplify=True, network_type="walk")

# Use this line if the coordinates system returned from polys is changed from the original (check which crs you are using)
# G = ox.project_graph(G, to_crs="4483")

gdf_nodes = ox.graph_to_gdfs(G, edges=False)
x, y = gdf_nodes["geometry"].unary_union.centroid.xy
center_node = ox.nearest_nodes(G, Y=y[0], X=x[0])

# km per hour to m per minute times the minutes to walk
walking_meters = walk_time * speed * 1000 / 60

subgraph = nx.ego_graph(G, center_node, radius=walking_meters, distance="length")
node_points = [Point(data["x"], data["y"]) for node, data in subgraph.nodes(data=True)]
self.geometry = gpd.GeoSeries(node_points).unary_union.convex_hull

def get_features(self, label: t.Optional[str] = None, tags: t.Optional[TagsDict] = None):
effective_tags: t.Dict = {}
if label:
effective_tags.update(self.queries[label])
if tags:
effective_tags.update(tags)
location_features = LocationFeatures(center=self.center, geometry=self.geometry, with_distance=True)
try:
location_features.acquire(tags=effective_tags)
except:
print(f"No features found with tags: {effective_tags}")
return location_features


def main():
point = Point(13.24932, 52.75389)
loi = LocationOfInterest(center=point)
loi.compute_isochrone()

print("Water")
water_features = loi.get_features(label="water")
print(water_features.compact)

print("Food")
food_features = loi.get_features(label="food")
print(food_features.compact)

print("Toilet")
toilet_features = loi.get_features(label="toilet")
print(toilet_features.compact)


if __name__ == "__main__":
setup()
main()

0 comments on commit 22ff60a

Please sign in to comment.