Skip to content

Commit

Permalink
[ONNX] Added SimplifiedLayerNormalization from com.microsoft domain (#…
Browse files Browse the repository at this point in the history
…27318)

Details:
Microsoft Contrib Operator "SimplifiedLayerNormalization" for ONNX RT

Tickets:
N/A
  • Loading branch information
vatsalashanubhag authored Nov 25, 2024
1 parent 0942797 commit 0d918dc
Show file tree
Hide file tree
Showing 5 changed files with 329 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "core/operator_set.hpp"
#include "exceptions.hpp"
#include "openvino/frontend/exception.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/convert.hpp"
#include "openvino/op/divide.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/range.hpp"
#include "openvino/op/reduce_mean.hpp"
#include "openvino/op/shape_of.hpp"
#include "openvino/op/sqrt.hpp"
#include "utils/common.hpp"

using namespace ov::op;
using ::ONNX_NAMESPACE::TensorProto_DataType;

namespace ov {
namespace frontend {
namespace onnx {
namespace com_microsoft {
namespace opset_1 {

ov::OutputVector simplified_layer_normalization(const ov::frontend::onnx::Node& node) {
common::default_op_checks(node, 2);

const auto inputs = node.get_ov_inputs();
auto X = inputs[0];
const auto scale = inputs[1];

CHECK_VALID_NODE(node,
X.get_element_type() == scale.get_element_type(),
"X and scale must be of same type, got :",
X.get_element_type(),
scale.get_element_type());

float epsilon = node.get_attribute_value<float>("epsilon", 1e-5f);
int64_t axis = node.get_attribute_value<int64_t>("axis", -1);
int64_t default_stash_type = static_cast<int64_t>(TensorProto_DataType::TensorProto_DataType_FLOAT);
int64_t stash_type_i = node.get_attribute_value<int64_t>("stash_type", default_stash_type);
element::Type stash_type = common::get_ov_element_type(stash_type_i);

auto rank = std::make_shared<v0::ShapeOf>(X);
auto axes = std::make_shared<v4::Range>(v0::Constant::create(element::i64, {}, {axis}),
(axis < 0 ? v0::Constant::create(element::i64, {}, {0})->output(0) : rank),
v0::Constant::create(element::i64, {}, {1}),
element::i64);

bool needs_type_casting = stash_type != X.get_element_type();
if (needs_type_casting) {
X = std::make_shared<v0::Convert>(X, stash_type);
}

auto squared_X = std::make_shared<v1::Multiply>(X, X); // X^2
auto mean = std::make_shared<v1::ReduceMean>(squared_X, axes, true); // mean = (1/N) * Σ(j=1 to N) X_j^2
auto rms_value =
std::make_shared<v0::Sqrt>(std::make_shared<v1::Add>(mean, v0::Constant::create(stash_type, {}, {epsilon})));
auto inv_std_var = std::make_shared<v1::Divide>(v0::Constant::create(stash_type, {}, {1.0}), rms_value);
auto normalized = std::make_shared<v1::Multiply>(X, inv_std_var); // X / RMS(X)

auto scaled = std::make_shared<v1::Multiply>(normalized, scale); // (X / RMS(X)) * scale

return ov::OutputVector{scaled, inv_std_var};
}

ONNX_OP("SimplifiedLayerNormalization",
OPSET_SINCE(1),
com_microsoft::opset_1::simplified_layer_normalization,
MICROSOFT_DOMAIN);
} // namespace opset_1
} // namespace com_microsoft
} // namespace onnx
} // namespace frontend
} // namespace ov
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
ir_version: 3
producer_name: "OpenVINO ONNX Frontend"
graph {
node {
input: "X"
input: "scale"
output: "simplified_layer_norm"
name: "test_simplified_layer_norm"
op_type: "SimplifiedLayerNormalization"
attribute {
name: "epsilon"
f: 1e-05
type: FLOAT
}
attribute {
name: "axis"
i: -1
type: INT
}
attribute {
name: "stash_type"
i: 1
type: INT
}
domain: "com.microsoft"
}
initializer {
dims: 8
data_type: 1
name: "scale"
raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f"
}
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 8
}
}
}
}
}
output {
name: "simplified_layer_norm"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 8
}
}
}
}
}
}
opset_import {
domain: "com.microsoft"
version: 1
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
ir_version: 3
producer_name: "OpenVINO ONNX Frontend"
graph {
node {
input: "X"
input: "scale"
output: "simplified_layer_norm"
name: "test_simplified_layer_norm"
op_type: "SimplifiedLayerNormalization"
attribute {
name: "epsilon"
f: 1e-05
type: FLOAT
}
attribute {
name: "axis"
i: -1
type: INT
}
attribute {
name: "stash_type"
i: 1
type: INT
}
domain: "com.microsoft"
}
initializer {
dims: 8
data_type: 1
name: "scale"
raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f"
}
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
dim {
dim_value: 8
}
}
}
}
}
output {
name: "simplified_layer_norm"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
dim {
dim_value: 8
}
}
}
}
}
}
opset_import {
domain: "com.microsoft"
version: 1
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
ir_version: 3
producer_name: "OpenVINO ONNX Frontend"
graph {
node {
input: "X"
input: "scale"
output: "simplified_layer_norm"
name: "test_simplified_layer_norm"
op_type: "SimplifiedLayerNormalization"
attribute {
name: "epsilon"
f: 1e-05
type: FLOAT
}
attribute {
name: "axis"
i: -1
type: INT
}
attribute {
name: "stash_type"
i: 1
type: INT
}
domain: "com.microsoft"
}
initializer {
dims: 8
data_type: 1
name: "scale"
raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f"
}
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
dim {
dim_value: 8
}
}
}
}
}
output {
name: "simplified_layer_norm"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
dim {
dim_value: 8
}
}
}
}
}
}
opset_import {
domain: "com.microsoft"
version: 1
}
39 changes: 39 additions & 0 deletions src/frontends/onnx/tests/onnx_import_com_microsoft.in.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1356,3 +1356,42 @@ OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_quickgelu) {
test_case.run();
}
}

OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_simplified_layer_normalization_2x2x8) {
const auto model = convert_model("com.microsoft/simplified_layer_normalization_2x2x8.onnx");
auto test_case = ov::test::TestCase(model, s_device);

const std::vector<float> X{1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f,
12.f, 13.f, 14.f, 15.f, 16.f, 17.f, 18.f, 19.f, 20.f, 21.f, 22.f,
23.f, 24.f, 25.f, 26.f, 27.f, 28.f, 29.f, 30.f, 31.f, 32.f};

test_case.add_input<float>(Shape{2, 2, 8}, X);

test_case.add_expected_output<float>(
Shape{2, 2, 8},
{0.19802947f, 0.39605895f, 0.59408844f, 0.7921179f, 0.9901474f, 1.1881769f, 1.3862064f, 1.5842358f,
0.7082005f, 0.78688943f, 0.8655784f, 0.94426733f, 1.0229563f, 1.1016452f, 1.1803342f, 1.2590232f,
0.8241365f, 0.8726151f, 0.9210937f, 0.96957237f, 1.0180509f, 1.0665295f, 1.1150082f, 1.1634868f,
0.87437177f, 0.90934664f, 0.9443215f, 0.9792964f, 1.0142713f, 1.0492461f, 1.084221f, 1.1191958f});

test_case.run();
}

OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_simplified_layer_normalization_3x8) {
const auto model = convert_model("com.microsoft/simplified_layer_normalization_3x8.onnx");
auto test_case = ov::test::TestCase(model, s_device);

const std::vector<float> X{0.198f, 0.396f, 0.594f, 0.792f, 0.990f, 1.188f, 1.386f, 1.584f,
0.708f, 0.786f, 0.865f, 0.944f, 1.023f, 1.102f, 1.180f, 1.259f,
0.824f, 0.873f, 0.921f, 0.970f, 1.018f, 1.067f, 1.115f, 1.163f};

test_case.add_input<float>(Shape{3, 8}, X);

test_case.add_expected_output<float>(
Shape{3, 8},
{0.19802852f, 0.39605704f, 0.5940855f, 0.7921141f, 0.9901426f, 1.188171f, 1.3861997f, 1.5842282f,
0.70813656f, 0.7861516f, 0.86516684f, 0.94418204f, 1.0231973f, 1.1022125f, 1.1802275f, 1.2592428f,
0.82395196f, 0.8729491f, 0.9209463f, 0.96994346f, 1.0179406f, 1.0669378f, 1.114935f, 1.1629322f});

test_case.run();
}

0 comments on commit 0d918dc

Please sign in to comment.