Skip to content

Commit

Permalink
Use whole history in case of undetermined tokenization of sequence (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
ilya-lavrenov authored Dec 3, 2024
2 parents 2e2f5bc + cc6b4f5 commit a4fe38b
Show file tree
Hide file tree
Showing 6 changed files with 225 additions and 57 deletions.
140 changes: 99 additions & 41 deletions src/cpp/src/llm_pipeline.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,13 @@ std::pair<EncodedResults, int32_t> beam_search(
class StatefulLLMPipeline final : public LLMPipelineImplBase {
public:
ov::InferRequest m_model_runner;

bool is_chat_conversation = false;
bool m_is_cache_empty = true;
bool m_trust_encoded_history = true;
std::optional<int32_t> m_selected_beam = std::nullopt;
ChatHistory m_history;
std::string m_templated_chat_history = {};
TokenizedInputs m_tokenized_chat_history;
std::vector<int64_t> m_tokenized_chat_history;
ov::genai::utils::GenerationChatInputsType m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF;

StatefulLLMPipeline(
const ov::InferRequest& request,
Expand Down Expand Up @@ -94,6 +94,13 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
OptionalGenerationConfig generation_config,
StreamerVariant streamer
) override {
if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::UNDEF)
m_chat_input_type = ov::genai::utils::GenerationChatInputsType::STRING;

if (is_chat_conversation)
OPENVINO_ASSERT(m_chat_input_type != ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS,
"Chat doesn't support switching between input types. Please, continue using EncodedInputs or restart the chat.");

auto start_time = std::chrono::steady_clock::now();
GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config;
TokenizedInputs encoded_input;
Expand All @@ -119,14 +126,36 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
auto new_templated_chat_history = m_tokenizer.apply_chat_template(m_history, add_generation_prompt);
// Do not add special tokens in chat scenario to be aligned with HF.
auto new_chat_tokens = m_tokenizer.encode(new_templated_chat_history, ov::genai::add_special_tokens(false));
if (m_is_cache_empty) {
encoded_input = new_chat_tokens;
} else {
auto prev_chat_tokens = m_tokenizer.encode(m_templated_chat_history, ov::genai::add_special_tokens(false));
auto prev_chat_tokens = m_tokenizer.encode(m_templated_chat_history, ov::genai::add_special_tokens(false));

// some symbols combinations can be encoded by the tokenizer in different ways
// if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history
// and find the difference as a prompt, so let's check it out and use the whole history in this case
if (!m_tokenized_chat_history.empty()) {
auto stop_tokens = config.stop_token_ids;
// config could be reset by user and stop_tokens could be empty
// but model/tokenizer still will rely to eos token, so let's add it
stop_tokens.insert(m_tokenizer.get_eos_token_id());
size_t last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens);
m_trust_encoded_history = last_same_hist_token == SIZE_MAX;
}

if (!m_trust_encoded_history) {
reset_kv_state();
m_selected_beam = std::nullopt;
}

if (!m_tokenized_chat_history.empty() && m_trust_encoded_history) {
encoded_input = utils::subtract_chat_tokenized_inputs(new_chat_tokens, prev_chat_tokens);
} else {
encoded_input = new_chat_tokens;
}
m_templated_chat_history = new_templated_chat_history;
m_tokenized_chat_history = new_chat_tokens;
m_tokenized_chat_history.clear();
m_tokenized_chat_history.reserve(new_chat_tokens.input_ids.get_size());
std::copy_n(new_chat_tokens.input_ids.data<int64_t>(), new_chat_tokens.input_ids.get_size(),
std::back_inserter(m_tokenized_chat_history));

// TODO: Forbid LoRA config change if we are in the chat mode, because it requires regenerating the history with LoRA applied
} else {
encoded_input = m_tokenizer.encode(prompt);
Expand Down Expand Up @@ -180,6 +209,14 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
OptionalGenerationConfig generation_config,
StreamerVariant streamer
) override {
if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::UNDEF)
m_chat_input_type = ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS;

if (is_chat_conversation)
// if chat was run in StringInputs mode, but it was called EncodedInputs generate, last m_history entry will be with assistant role
OPENVINO_ASSERT(m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS || m_history.back()["role"] == "user",
"Chat doesn't support switching between input types. Please, continue using StringInputs or restart the chat.");

auto start_time = std::chrono::steady_clock::now();
ov::Tensor input_ids;
ov::Tensor attention_mask;
Expand All @@ -191,6 +228,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
attention_mask = data->attention_mask;
}

if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS)
std::copy(input_ids.data<int64_t>(), input_ids.data<int64_t>() + input_ids.get_size(), std::back_inserter(m_tokenized_chat_history));

GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config;

// If eos_token_id was not provided, take value from default m_generation_config
Expand Down Expand Up @@ -222,53 +262,66 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
"(input_ids, attention_mask, position_ids, beam_idx) "
"but you have '" + std::to_string(num_inputs) + "' inputs");


ov::Tensor tokenized_chat_history = ov::Tensor(ov::element::i64, {1, m_tokenized_chat_history.size()}, m_tokenized_chat_history.data());
size_t kv_cache_len = 0;
ov::Tensor concatenated_attention_mask;
if (is_chat_conversation && !m_is_cache_empty) {
OPENVINO_ASSERT(batch_size == 1, "continuation of generation is possible only for batch 1");
// If history is saved in KV cache, concatenate new attention_mask with the already existing.
// Between subsequent runs attention_mask should not be modified.
auto atten_mask_history = m_model_runner.get_tensor("attention_mask");
auto prompt_len = attention_mask.get_shape()[1];
kv_cache_len = atten_mask_history.get_shape()[1];

ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, {batch_size, kv_cache_len + prompt_len}};
auto start_atten_hst = atten_mask_history.data<int64_t>() + kv_cache_len * (*m_selected_beam);
std::copy(start_atten_hst, start_atten_hst + kv_cache_len,
new_atten_mask.data<int64_t>());
std::copy(attention_mask.data<int64_t>(), attention_mask.data<int64_t>() + prompt_len,
new_atten_mask.data<int64_t>() + kv_cache_len);
concatenated_attention_mask = new_atten_mask;
if (is_chat_conversation && !m_tokenized_chat_history.empty()) {
if (m_trust_encoded_history) {
OPENVINO_ASSERT(batch_size == 1, "continuation of generation is possible only for batch 1");
// If history is saved in KV cache, concatenate new attention_mask with the already existing.
// Between subsequent runs attention_mask should not be modified.
auto atten_mask_history = m_model_runner.get_tensor("attention_mask");
auto prompt_len = attention_mask.get_shape()[1];
kv_cache_len = atten_mask_history.get_shape()[1];

ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, {batch_size, kv_cache_len + prompt_len}};
auto start_atten_hst = atten_mask_history.data<int64_t>() + kv_cache_len * (*m_selected_beam);
std::copy(start_atten_hst, start_atten_hst + kv_cache_len,
new_atten_mask.data<int64_t>());
std::copy(attention_mask.data<int64_t>(), attention_mask.data<int64_t>() + prompt_len,
new_atten_mask.data<int64_t>() + kv_cache_len);
concatenated_attention_mask = new_atten_mask;
} else {
attention_mask = ov::genai::utils::init_attention_mask(tokenized_chat_history);
concatenated_attention_mask = attention_mask;
}
} else {
concatenated_attention_mask = attention_mask;
}

bool position_ids_available = (num_inputs == 4);
std::optional<ov::Tensor> position_ids = std::nullopt;
if (position_ids_available) {
position_ids = ov::Tensor{ov::element::i64, input_ids.get_shape()};
utils::initialize_position_ids(*position_ids, attention_mask, kv_cache_len);
if (is_chat_conversation && !m_trust_encoded_history) {
position_ids = ov::Tensor{ov::element::i64, tokenized_chat_history.get_shape()};
} else {
position_ids = ov::Tensor{ov::element::i64, input_ids.get_shape()};
}
utils::initialize_position_ids(*position_ids, attention_mask, kv_cache_len);
}

if(m_adapter_controller) {
m_adapter_controller->apply(m_model_runner, config.adapters);
}

auto input_tokens = input_ids;
if (is_chat_conversation && !m_trust_encoded_history) {
input_tokens = tokenized_chat_history;
m_trust_encoded_history = true;
}

ov::genai::EncodedResults result;
if (config.is_beam_search() && is_chat_conversation) {
std::tie(result, m_selected_beam) = beam_search(m_model_runner, input_ids, concatenated_attention_mask,
std::tie(result, m_selected_beam) = beam_search(m_model_runner, input_tokens, concatenated_attention_mask,
config, position_ids, m_selected_beam);
} else {
std::vector<SequenceGroup::Ptr> requests;
size_t block_size = 1;
bool enable_prefix_caching = false;

config.stop_token_ids.insert(config.eos_token_id);
for (size_t request_id = 0; request_id < batch_size; request_id++) {
SequenceGroup::Ptr sequence_group;
if (is_chat_conversation && !m_is_cache_empty) {
sequence_group = std::make_shared<SequenceGroup>(request_id, m_tokenized_chat_history.input_ids, config, block_size, enable_prefix_caching);
if (is_chat_conversation) {
sequence_group = std::make_shared<SequenceGroup>(request_id, tokenized_chat_history, config, block_size, enable_prefix_caching);
} else {
size_t seq_len = input_ids.get_shape().at(1);
size_t batch_offset = request_id * seq_len;
Expand All @@ -283,16 +336,17 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
}

Sampler sampler = Sampler(m_tokenizer);
std::tie(result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_model_runner, input_ids, concatenated_attention_mask, streamer_ptr,
sampler, requests, position_ids, std::nullopt, m_selected_beam);
std::tie(result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_model_runner, input_tokens, concatenated_attention_mask, streamer_ptr,
sampler, requests, position_ids, std::nullopt, m_selected_beam);
}

if (!is_chat_conversation) {
if (is_chat_conversation) {
std::copy(result.tokens[0].begin(), result.tokens[0].end(), std::back_inserter(m_tokenized_chat_history));
} else {
reset_kv_state();
m_selected_beam = std::nullopt;
} else {
m_is_cache_empty = false;
}

auto stop_time = std::chrono::steady_clock::now();

// If is called without tokenization then that stat will not be reported.
Expand All @@ -306,12 +360,14 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {

void start_chat(const std::string& system_message) override {
is_chat_conversation = true;
m_selected_beam = std::nullopt;
if (!m_is_cache_empty) {
m_selected_beam = std::nullopt;
m_trust_encoded_history = true;
m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF;
if (!m_tokenized_chat_history.empty()) {
reset_kv_state();
m_is_cache_empty = true;
m_history = {};
m_templated_chat_history = "";
m_tokenized_chat_history.clear();
}
if (system_message.empty())
return;
Expand All @@ -325,11 +381,13 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase {
void finish_chat() override {
is_chat_conversation = false;
m_selected_beam = std::nullopt;
if (!m_is_cache_empty) {
m_trust_encoded_history = true;
m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF;
if (!m_tokenized_chat_history.empty()) {
reset_kv_state();
m_is_cache_empty = true;
m_history.clear();
m_templated_chat_history.clear();
m_tokenized_chat_history.clear();
}
}
};
Expand Down
37 changes: 37 additions & 0 deletions src/cpp/src/utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
#include "openvino/op/tanh.hpp"
#include "openvino/op/transpose.hpp"

#include "sampler.hpp"

namespace ov {
namespace genai {
namespace utils {
Expand Down Expand Up @@ -265,6 +267,41 @@ ov::Core singleton_core() {
return core;
}

size_t get_first_history_difference(const ov::Tensor& encoded_history, const std::vector<int64_t> tokenized_history, std::set<int64_t> stop_tokens) {
size_t idx = 0;
auto encoded_history_data = encoded_history.data<int64_t>();
while(idx < encoded_history.get_size() && idx < tokenized_history.size()) {
if (encoded_history_data[idx] != tokenized_history[idx])
break;
idx++;
}

// encoded_history after decode of tokenizer could lose one last token (eos/stop token)
if ((idx == tokenized_history.size() && idx == encoded_history.get_size()) ||
(encoded_history.get_size() < tokenized_history.size() && idx == tokenized_history.size() - 1 && stop_tokens.find(tokenized_history.back()) != stop_tokens.end()))
return SIZE_MAX;
else
return idx;
}

void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end) {
// TODO: add handling for case with LoRA adapters enabled
auto states = request.query_state();
for (auto& state : states) {
ov::Tensor old_tensor = state.get_state();
// [BATCH_SIZE, num_kv_heads, seq_len, head_size]
auto shape = old_tensor.get_shape();
shape[2] -= remove_from_end;

ov::Coordinate new_shape_begin{0, 0, 0, 0};
ov::Coordinate new_shape_end{shape};

auto new_tensor = ov::Tensor(old_tensor, new_shape_begin, new_shape_end);

state.set_state(new_tensor);
}
}

} // namespace utils
} // namespace genai
} // namespace ov
10 changes: 10 additions & 0 deletions src/cpp/src/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,12 @@ namespace ov {
namespace genai {
namespace utils {

enum class GenerationChatInputsType {
UNDEF = 0, // Default value, type of inputs is not defined
STRING = 1, // Type of inputs is StringInputs
ENCODED_INPUTS = 2, // Type of inputs is EncodedInputs
};

Tensor init_attention_mask(const Tensor& position_ids);

void print_tensor(const ov::Tensor& tensor);
Expand Down Expand Up @@ -66,6 +72,10 @@ void slice_matmul_statefull_model(std::shared_ptr<ov::Model> model);

ov::Core singleton_core();

size_t get_first_history_difference(const ov::Tensor& encoded_history, const std::vector<int64_t> tokenized_history, std::set<int64_t> stop_tokens);

void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end);

} // namespace utils
} // namespace genai
} // namespace ov
Loading

0 comments on commit a4fe38b

Please sign in to comment.