-
Notifications
You must be signed in to change notification settings - Fork 246
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
191b53d
commit 96975b3
Showing
38 changed files
with
28,722 additions
and
28,722 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,9 @@ | ||
strict digraph { | ||
strict digraph { | ||
"Node^^A" [label=":baz"]; | ||
"Node^^B" [label="qux:"]; | ||
"Node^^C" [label="Node::C"]; | ||
D; | ||
E [label=no_label]; | ||
E [label="no_label"]; | ||
F [label="has^label"]; | ||
"Node^^A" -> "Node^^B" [label="foo:bar"]; | ||
"Node^^A" -> "Node^^B" [label="foo:bar"]; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
32 changes: 16 additions & 16 deletions
32
tests/torch2/data/function_hook/graph_visualization/to_pydot_style_full.dot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,18 @@ | ||
digraph { | ||
digraph { | ||
rankdir=TB; | ||
0 [fillcolor="#adadad", fontcolor="#000000", label="{type: input|name: x|dtype: torch.float32|shape: (1, 1, 3, 3)}", shape=record, style="filled,rounded"]; | ||
1 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: conv.weight|dtype: torch.float32|shape: (1, 1, 1, 1)}", shape=record, style="filled,rounded"]; | ||
2 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: conv.bias|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
3 [fillcolor="#ffd6a5", fontcolor="#000000", label="{type: function_call|op_name: conv/conv2d/0|fn_name: conv2d|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\nTensorMeta(dtype=torch.float32, shape=(1, 1, 1, 1)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\n(1, 1),\n(0, 0),\n(1, 1),\n1,\n]|kwargs: \{\}}", shape=record, style="filled,rounded"]; | ||
4 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: __nncf_hooks.post_hooks.conv/conv2d/0__0.0.w|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
5 [fillcolor="#caffbf", fontcolor="#000000", label="{type: function_call|op_name: conv/post_hook__conv-conv2d-0__0[0]/add/0|fn_name: add|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\n]|kwargs: \{\}}", shape=record, style="filled,rounded"]; | ||
6 [fillcolor="#a0c4ff", fontcolor="#000000", label="{type: function_call|op_name: /relu/0|fn_name: relu|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\n]|kwargs: \{\}}", shape=record, style="filled,rounded"]; | ||
7 [fillcolor="#adadad", fontcolor="#000000", label="{type: output|name: output|dtype: torch.float32|shape: (1, 1, 3, 3)}", shape=record, style="filled,rounded"]; | ||
0 -> 3 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
1 -> 3 [label="(1, 1, 1, 1)\n0 → 1"]; | ||
2 -> 3 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
4 -> 5 [label="(1,)\n0 → 1"]; | ||
5 -> 6 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
6 -> 7 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
0 [label="{type: input|name: x|dtype: torch.float32|shape: (1, 1, 3, 3)}", fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
1 [label="{type: const|name: conv.weight|dtype: torch.float32|shape: (1, 1, 1, 1)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
2 [label="{type: const|name: conv.bias|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
3 [label="{type: function_call|op_name: conv/conv2d/0|fn_name: conv2d|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\nTensorMeta(dtype=torch.float32, shape=(1, 1, 1, 1)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\n(1, 1),\n(0, 0),\n(1, 1),\n1,\n]|kwargs: \{\}}", fillcolor="#ffd6a5", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
4 [label="{type: const|name: __nncf_hooks.post_hooks.conv/conv2d/0__0.0.w|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
5 [label="{type: function_call|op_name: conv/post_hook__conv-conv2d-0__0[0]/add/0|fn_name: add|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\n]|kwargs: \{\}}", fillcolor="#caffbf", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
6 [label="{type: function_call|op_name: /relu/0|fn_name: relu|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 3, 3)),\n]|kwargs: \{\}}", fillcolor="#a0c4ff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
7 [label="{type: output|name: output|dtype: torch.float32|shape: (1, 1, 3, 3)}", fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
0 -> 3 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
1 -> 3 [label="(1, 1, 1, 1)\n0 → 1"]; | ||
2 -> 3 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
4 -> 5 [label="(1,)\n0 → 1"]; | ||
5 -> 6 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
6 -> 7 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
} |
32 changes: 16 additions & 16 deletions
32
tests/torch2/data/function_hook/graph_visualization/to_pydot_style_short.dot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,18 @@ | ||
digraph { | ||
digraph { | ||
rankdir=TB; | ||
0 [fillcolor="#adadad", fontcolor="#000000", label=x, shape=record, style="filled,rounded"]; | ||
1 [fillcolor="#ffffff", fontcolor="#000000", label="conv.weight", shape=record, style="filled,rounded"]; | ||
2 [fillcolor="#ffffff", fontcolor="#000000", label="conv.bias", shape=record, style="filled,rounded"]; | ||
3 [fillcolor="#ffd6a5", fontcolor="#000000", label="conv/conv2d/0", shape=record, style="filled,rounded"]; | ||
4 [fillcolor="#ffffff", fontcolor="#000000", label="__nncf_hooks.post_hooks.conv/conv2d/0__0.0.w", shape=record, style="filled,rounded"]; | ||
5 [fillcolor="#caffbf", fontcolor="#000000", label="conv/post_hook__conv-conv2d-0__0[0]/add/0", shape=record, style="filled,rounded"]; | ||
6 [fillcolor="#a0c4ff", fontcolor="#000000", label="/relu/0", shape=record, style="filled,rounded"]; | ||
7 [fillcolor="#adadad", fontcolor="#000000", label=output, shape=record, style="filled,rounded"]; | ||
0 -> 3 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
1 -> 3 [label="(1, 1, 1, 1)\n0 → 1"]; | ||
2 -> 3 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
4 -> 5 [label="(1,)\n0 → 1"]; | ||
5 -> 6 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
6 -> 7 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
0 [label=x, fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
1 [label="conv.weight", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
2 [label="conv.bias", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
3 [label="conv/conv2d/0", fillcolor="#ffd6a5", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
4 [label="__nncf_hooks.post_hooks.conv/conv2d/0__0.0.w", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
5 [label="conv/post_hook__conv-conv2d-0__0[0]/add/0", fillcolor="#caffbf", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
6 [label="/relu/0", fillcolor="#a0c4ff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
7 [label=output, fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
0 -> 3 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
1 -> 3 [label="(1, 1, 1, 1)\n0 → 1"]; | ||
2 -> 3 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
4 -> 5 [label="(1,)\n0 → 1"]; | ||
5 -> 6 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
6 -> 7 [label="(1, 1, 3, 3)\n0 → 0"]; | ||
} |
28 changes: 14 additions & 14 deletions
28
tests/torch2/data/function_hook/handle_inner_functions/inner_functions_BatchNormModel.dot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,16 @@ | ||
digraph { | ||
digraph { | ||
rankdir=TB; | ||
0 [fillcolor="#adadad", fontcolor="#000000", label="{type: input|name: x|dtype: torch.float32|shape: (1, 1, 1)}", shape=record, style="filled,rounded"]; | ||
1 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: bn.weight|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
2 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: bn.bias|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
3 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: bn.running_mean|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
4 [fillcolor="#ffffff", fontcolor="#000000", label="{type: const|name: bn.running_var|dtype: torch.float32|shape: (1,)}", shape=record, style="filled,rounded"]; | ||
5 [fillcolor="#ffadad", fontcolor="#000000", label="{type: function_call|op_name: bn/batch_norm/0|fn_name: batch_norm|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 1)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nFalse,\n0.1,\n1e-05,\nTrue,\n]|kwargs: \{\}}", shape=record, style="filled,rounded"]; | ||
6 [fillcolor="#adadad", fontcolor="#000000", label="{type: output|name: output|dtype: torch.float32|shape: (1, 1, 1)}", shape=record, style="filled,rounded"]; | ||
0 -> 5 [label="(1, 1, 1)\n0 → 0"]; | ||
1 -> 5 [label="(1,)\n0 → 1"]; | ||
2 -> 5 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1,)\n0 → 3"]; | ||
4 -> 5 [label="(1,)\n0 → 4"]; | ||
5 -> 6 [label="(1, 1, 1)\n0 → 0"]; | ||
0 [label="{type: input|name: x|dtype: torch.float32|shape: (1, 1, 1)}", fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
1 [label="{type: const|name: bn.weight|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
2 [label="{type: const|name: bn.bias|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
3 [label="{type: const|name: bn.running_mean|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
4 [label="{type: const|name: bn.running_var|dtype: torch.float32|shape: (1,)}", fillcolor="#ffffff", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
5 [label="{type: function_call|op_name: bn/batch_norm/0|fn_name: batch_norm|args: [\nTensorMeta(dtype=torch.float32, shape=(1, 1, 1)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nTensorMeta(dtype=torch.float32, shape=(1,)),\nFalse,\n0.1,\n1e-05,\nTrue,\n]|kwargs: \{\}}", fillcolor="#ffadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
6 [label="{type: output|name: output|dtype: torch.float32|shape: (1, 1, 1)}", fillcolor="#adadad", fontcolor="#000000", shape=record, style="filled,rounded"]; | ||
0 -> 5 [label="(1, 1, 1)\n0 → 0"]; | ||
1 -> 5 [label="(1,)\n0 → 1"]; | ||
2 -> 5 [label="(1,)\n0 → 2"]; | ||
3 -> 5 [label="(1,)\n0 → 3"]; | ||
4 -> 5 [label="(1,)\n0 → 4"]; | ||
5 -> 6 [label="(1, 1, 1)\n0 → 0"]; | ||
} |
Oops, something went wrong.