Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hw_submission(吴振锋): add hw5_20230411 #69

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions chapter4_reward/q1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# RND
模型过小时,容易欠拟合,训练误差更大,而且奖励浮动范围大,但small比little的模型浮动更大,这就有点奇怪。模型过大时,容易过拟合,泛化能力弱,large和very_large模型曲线走势接近,完全拟合了训练数据包括噪声,收敛更慢。
![q1](q1.png)
Binary file added chapter4_reward/q1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
324 changes: 324 additions & 0 deletions chapter4_reward/q1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
# pip install minigrid
from typing import Union, Tuple, Dict, List, Optional
from multiprocessing import Process
import multiprocessing as mp
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import minigrid
import gymnasium as gym
from torch.optim.lr_scheduler import ExponentialLR, MultiStepLR
from tensorboardX import SummaryWriter
from minigrid.wrappers import FlatObsWrapper

random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")

train_config = dict(
train_iter=1024,
train_data_count=128,
test_data_count=4096,
)

little_RND_net_config = dict(
exp_name="little_rnd_network",
observation_shape=2835,
hidden_size_list=[32, 16],
learning_rate=1e-3,
batch_size=64,
update_per_collect=100,
obs_norm=True,
obs_norm_clamp_min=-1,
obs_norm_clamp_max=1,
reward_mse_ratio=1e5,
)

small_RND_net_config = dict(
exp_name="small_rnd_network",
observation_shape=2835,
hidden_size_list=[64, 64],
learning_rate=1e-3,
batch_size=64,
update_per_collect=100,
obs_norm=True,
obs_norm_clamp_min=-1,
obs_norm_clamp_max=1,
reward_mse_ratio=1e5,
)

standard_RND_net_config = dict(
exp_name="standard_rnd_network",
observation_shape=2835,
hidden_size_list=[128, 64],
learning_rate=1e-3,
batch_size=64,
update_per_collect=100,
obs_norm=True,
obs_norm_clamp_min=-1,
obs_norm_clamp_max=1,
reward_mse_ratio=1e5,
)

large_RND_net_config = dict(
exp_name="large_RND_network",
observation_shape=2835,
hidden_size_list=[256, 256],
learning_rate=1e-3,
batch_size=64,
update_per_collect=100,
obs_norm=True,
obs_norm_clamp_min=-1,
obs_norm_clamp_max=1,
reward_mse_ratio=1e5,
)

very_large_RND_net_config = dict(
exp_name="very_large_RND_network",
observation_shape=2835,
hidden_size_list=[512, 512],
learning_rate=1e-3,
batch_size=64,
update_per_collect=100,
obs_norm=True,
obs_norm_clamp_min=-1,
obs_norm_clamp_max=1,
reward_mse_ratio=1e5,
)

class FCEncoder(nn.Module):
def __init__(
self,
obs_shape: int,
hidden_size_list,
activation: Optional[nn.Module] = nn.ReLU(),
) -> None:
super(FCEncoder, self).__init__()
self.obs_shape = obs_shape
self.act = activation
self.init = nn.Linear(obs_shape, hidden_size_list[0])

layers = []
for i in range(len(hidden_size_list) - 1):
layers.append(nn.Linear(hidden_size_list[i], hidden_size_list[i + 1]))
layers.append(self.act)
self.main = nn.Sequential(*layers)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.act(self.init(x))
x = self.main(x)
return x

class RndNetwork(nn.Module):
def __init__(self, obs_shape: Union[int, list], hidden_size_list: list) -> None:
super(RndNetwork, self).__init__()
self.target = FCEncoder(obs_shape, hidden_size_list)
self.predictor = FCEncoder(obs_shape, hidden_size_list)

for param in self.target.parameters():
param.requires_grad = False

def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
predict_feature = self.predictor(obs)
with torch.no_grad():
target_feature = self.target(obs)
return predict_feature, target_feature

class RunningMeanStd(object):
def __init__(self, epsilon=1e-4, shape=(), device=torch.device('cpu')):
self._epsilon = epsilon
self._shape = shape
self._device = device
self.reset()

def update(self, x):
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]

new_count = batch_count + self._count
mean_delta = batch_mean - self._mean
new_mean = self._mean + mean_delta * batch_count / new_count
# this method for calculating new variable might be numerically unstable
m_a = self._var * self._count
m_b = batch_var * batch_count
m2 = m_a + m_b + np.square(mean_delta) * self._count * batch_count / new_count
new_var = m2 / new_count
self._mean = new_mean
self._var = new_var
self._count = new_count

def reset(self):
if len(self._shape) > 0:
self._mean = np.zeros(self._shape, 'float32')
self._var = np.ones(self._shape, 'float32')
else:
self._mean, self._var = 0., 1.
self._count = self._epsilon

@property
def mean(self) -> np.ndarray:
if np.isscalar(self._mean):
return self._mean
else:
return torch.FloatTensor(self._mean).to(self._device)

@property
def std(self) -> np.ndarray:
std = np.sqrt(self._var + 1e-8)
if np.isscalar(std):
return std
else:
return torch.FloatTensor(std).to(self._device)

class RndRewardModel():

def __init__(self, config) -> None: # noqa
super(RndRewardModel, self).__init__()
self.cfg = config

self.tb_logger = SummaryWriter(config["exp_name"])
self.reward_model = RndNetwork(
obs_shape=config["observation_shape"], hidden_size_list=config["hidden_size_list"]
).to(device)

self.opt = optim.Adam(self.reward_model.predictor.parameters(), config["learning_rate"])
self.scheduler = ExponentialLR(self.opt, gamma=0.997)

self.estimate_cnt_rnd = 0
if self.cfg["obs_norm"]:
self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4, device=device)

def __del__(self):
self.tb_logger.flush()
self.tb_logger.close()

def train(self, data) -> None:
for _ in range(self.cfg["update_per_collect"]):
train_data: list = random.sample(data, self.cfg["batch_size"])
train_data: torch.Tensor = torch.stack(train_data).to(device)
if self.cfg["obs_norm"]:
# Note: observation normalization: transform obs to mean 0, std 1
self._running_mean_std_rnd_obs.update(train_data.cpu().numpy())
train_data = (train_data - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
train_data = torch.clamp(
train_data, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"]
)

predict_feature, target_feature = self.reward_model(train_data)
loss = F.mse_loss(predict_feature, target_feature.detach())
self.opt.zero_grad()
loss.backward()
self.opt.step()
self.scheduler.step()

def estimate(self, data: list) -> List[Dict]:
"""
estimate the rnd intrinsic reward
"""

obs = torch.stack(data).to(device)
if self.cfg["obs_norm"]:
# Note: observation normalization: transform obs to mean 0, std 1
obs = (obs - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
obs = torch.clamp(obs, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"])

with torch.no_grad():
self.estimate_cnt_rnd += 1
predict_feature, target_feature = self.reward_model(obs)
mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
self.tb_logger.add_scalar('rnd_reward/mse', mse.cpu().numpy().mean(), self.estimate_cnt_rnd)

# Note: according to the min-max normalization, transform rnd reward to [0,1]
rnd_reward = mse * self.cfg["reward_mse_ratio"] #(mse - mse.min()) / (mse.max() - mse.min() + 1e-11)

self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)

rnd_reward = torch.chunk(rnd_reward, rnd_reward.shape[0], dim=0)

def training(config, train_data, test_data):
rnd_reward_model = RndRewardModel(config=config)
for i in range(train_config["train_iter"]):
rnd_reward_model.train([torch.Tensor(item["last_observation"]) for item in train_data[i]])
rnd_reward_model.estimate([torch.Tensor(item["last_observation"]) for item in test_data])

def main():
env = gym.make("MiniGrid-Empty-8x8-v0")
env_obs = FlatObsWrapper(env)

train_data = []
test_data = []

for i in range(train_config["train_iter"]):

train_data_per_iter = []

while len(train_data_per_iter) < train_config["train_data_count"]:
last_observation, _ = env_obs.reset()
terminated = False
while terminated != True and len(train_data_per_iter) < train_config["train_data_count"]:
action = env_obs.action_space.sample()
observation, reward, terminated, truncated, info = env_obs.step(action)
train_data_per_iter.append(
{
"last_observation": last_observation,
"action": action,
"reward": reward,
"observation": observation
}
)
last_observation = observation
env_obs.close()

train_data.append(train_data_per_iter)

while len(test_data) < train_config["test_data_count"]:
last_observation, _ = env_obs.reset()
terminated = False
while terminated != True and len(train_data_per_iter) < train_config["test_data_count"]:
action = env_obs.action_space.sample()
observation, reward, terminated, truncated, info = env_obs.step(action)
test_data.append(
{
"last_observation": last_observation,
"action": action,
"reward": reward,
"observation": observation
}
)
last_observation = observation
env_obs.close()

p0 = Process(target=training, args=(little_RND_net_config, train_data, test_data))
p0.start()

p1 = Process(target=training, args=(small_RND_net_config, train_data, test_data))
p1.start()

p2 = Process(target=training, args=(standard_RND_net_config, train_data, test_data))
p2.start()

p3 = Process(target=training, args=(large_RND_net_config, train_data, test_data))
p3.start()

p4 = Process(target=training, args=(very_large_RND_net_config, train_data, test_data))
p4.start()

p0.join()
p1.join()
p2.join()
p3.join()
p4.join()

if __name__ == "__main__":
mp.set_start_method('spawn')
main()
36 changes: 36 additions & 0 deletions chapter4_reward/q2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Please install latest DI-engine's main branch first
from ding.bonus import PPOF


def acrobot():
# Please install acrobot env first, `pip3 install gym`
# You can refer to the env doc (https://di-engine-docs.readthedocs.io/zh_CN/latest/13_envs/acrobot_zh.html) for more details
agent = PPOF(env='acrobot', exp_name='./acrobot_demo')
agent.train(step=int(1e5))
# Classic RL interaction loop and save replay video
agent.deploy(enable_save_replay=True)


def metadrive():
# Please install metadrive env first, `pip install metadrive-simulator`
# You can refer to the env doc (https://di-engine-docs.readthedocs.io/zh_CN/latest/13_envs/metadrive_zh.html) for more details
agent = PPOF(env='metadrive', exp_name='./metadrive_demo')
agent.train(step=int(1e6), context='spawn')
# Classic RL interaction loop and save replay video
agent.deploy(enable_save_replay=True)


def minigrid_fourroom():
# Please install minigrid env first, `pip install gym-minigrid`
# Note: minigrid env doesn't support Windows platform
# You can refer to the env doc (https://di-engine-docs.readthedocs.io/zh_CN/latest/13_envs/minigrid_zh.html) for more details
agent = PPOF(env='minigrid_fourroom', exp_name='./minigrid_fourroom_demo')
agent.train(step=int(3e6))
# Classic RL interaction loop and save replay video
agent.deploy(enable_save_replay=True)


if __name__ == "__main__":
# acrobot()
metadrive()
# minigrid_fourroom()
Binary file added chapter4_reward/q2_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added chapter4_reward/q2_2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading