forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: [email protected] <[email protected]>
- Loading branch information
1 parent
8be8105
commit c85c8b2
Showing
6 changed files
with
606 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
import argparse | ||
import asyncio | ||
import json | ||
from subprocess import CalledProcessError, run | ||
|
||
import aiohttp | ||
import numpy as np | ||
|
||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60) | ||
SAMPLE_RATE = 16000 | ||
|
||
|
||
def load_audio_from_file(file: str, sample_rate: int = SAMPLE_RATE): | ||
cmd = [ | ||
"ffmpeg", "-nostdin", "-threads", "0", "-i", file, "-f", "s16le", | ||
"-ac", "1", "-acodec", "pcm_s16le", "-ar", | ||
str(sample_rate), "-" | ||
] | ||
# fmt: on | ||
try: | ||
out = run(cmd, capture_output=True, check=True).stdout | ||
except CalledProcessError as e: | ||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e | ||
|
||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 | ||
|
||
|
||
async def iterate_response(response): | ||
output_text = "" | ||
if response.status == 200: | ||
async for chunk_bytes in response.content: | ||
chunk_bytes = chunk_bytes.strip() | ||
if not chunk_bytes: | ||
continue | ||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ") | ||
if chunk != "[DONE]": | ||
output_text += json.loads(chunk)["text"] | ||
return output_text | ||
|
||
|
||
async def transcribe_from_waveform(base_url: str, file_path: str): | ||
"""Send waveform to API Server for transcription.""" | ||
|
||
waveform = load_audio_from_file(file_path, SAMPLE_RATE) | ||
async with aiohttp.ClientSession(trust_env=True, | ||
timeout=AIOHTTP_TIMEOUT) as session: | ||
|
||
url = f"{base_url}/generate_from_waveform" | ||
data = { | ||
"waveform_bytes": waveform.tobytes(), | ||
"sampling_rate": str(SAMPLE_RATE) | ||
} | ||
async with session.post(url, data=data) as response: | ||
output = await iterate_response(response) | ||
return output | ||
|
||
|
||
async def transcribe_from_file(base_url: str, file_path: str): | ||
"""Send file to API Server for transcription.""" | ||
|
||
async with aiohttp.ClientSession(trust_env=True, | ||
timeout=AIOHTTP_TIMEOUT) as session: | ||
|
||
url = f"{base_url}/generate_from_file" | ||
with open(file_path, 'rb') as f: | ||
async with session.post(url, data={'file': f}) as response: | ||
output = await iterate_response(response) | ||
print(output) | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--filepath", type=str, default="1221-135766-0002.wav") | ||
parser.add_argument("--send-waveform", action="store_true") | ||
parser.add_argument("--host", type=str, default="localhost") | ||
parser.add_argument("--port", type=int, default=8000) | ||
|
||
if __name__ == "__main__": | ||
args = parser.parse_args() | ||
api_url = f"http://{args.host}:{args.port}" | ||
|
||
if args.send_waveform: | ||
asyncio.run( | ||
transcribe_from_waveform(base_url=api_url, | ||
file_path=args.filepath)) | ||
else: | ||
asyncio.run( | ||
transcribe_from_file(base_url=api_url, file_path=args.filepath)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
""" | ||
Evaluate Transcription API correctness by computing Word Error Rate (WER) | ||
on a given ASR dataset. When provided, it will also compare the WER against | ||
a baseline. | ||
""" | ||
|
||
import asyncio | ||
import json | ||
import time | ||
from argparse import ArgumentParser | ||
from statistics import mean, median | ||
from typing import List, Optional | ||
|
||
import aiohttp | ||
import librosa | ||
import numpy as np | ||
import torch | ||
from datasets import load_dataset | ||
from evaluate import load | ||
from transformers import AutoTokenizer, PreTrainedTokenizer | ||
|
||
WHISPER_SAMPLING_RATE = 16000 | ||
|
||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60) | ||
|
||
|
||
async def iterate_response(response) -> str: | ||
output_text = "" | ||
if response.status == 200: | ||
async for chunk_bytes in response.content: | ||
chunk_bytes = chunk_bytes.strip() | ||
if not chunk_bytes: | ||
continue | ||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ") | ||
if chunk != "[DONE]": | ||
output_text += json.loads(chunk)["text"] | ||
return output_text | ||
|
||
|
||
async def _transcribe_from_waveform(base_url: str, waveform: np.array, | ||
sr: int) -> str: | ||
async with aiohttp.ClientSession(trust_env=True, | ||
timeout=AIOHTTP_TIMEOUT) as session: | ||
|
||
assert sr == WHISPER_SAMPLING_RATE | ||
url = f"{base_url}/generate_from_waveform" | ||
data = {"waveform_bytes": waveform.tobytes(), "sampling_rate": str(sr)} | ||
async with session.post(url, data=data) as response: | ||
return await iterate_response(response) | ||
|
||
|
||
async def transcribe(tokenizer: PreTrainedTokenizer, sem: asyncio.Semaphore, | ||
base_url: str, waveform: np.ndarray, sampling_rate: int, | ||
reference: str): | ||
|
||
# Use semaphore to limit concurrent requests. | ||
async with sem: | ||
start = time.perf_counter() | ||
transcribed_text = await _transcribe_from_waveform( | ||
base_url=base_url, | ||
waveform=waveform, | ||
sr=sampling_rate, | ||
) | ||
latency = time.perf_counter() - start | ||
|
||
num_tokens = len( | ||
tokenizer(transcribed_text, add_special_tokens=False).input_ids) | ||
|
||
# Normalize *english* output/reference for evaluation. | ||
out = tokenizer.normalize(transcribed_text) | ||
ref = tokenizer.normalize(reference) | ||
return latency, num_tokens, out, ref | ||
|
||
|
||
async def process_dataset(model_name, | ||
data, | ||
concurrent_request, | ||
base_url="http://localhost:8000"): | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
|
||
sem = asyncio.Semaphore(concurrent_request) | ||
tasks: List[asyncio.Task] = [] | ||
for sample in data: | ||
waveform = sample["audio"]["array"].astype(np.float32) | ||
sampling_rate = sample["audio"]["sampling_rate"] | ||
reference = sample["text"] | ||
assert sampling_rate == WHISPER_SAMPLING_RATE | ||
|
||
task = asyncio.create_task( | ||
transcribe(tokenizer, sem, base_url, waveform, sampling_rate, | ||
reference)) | ||
tasks.append(task) | ||
return await asyncio.gather(*tasks) | ||
|
||
|
||
def print_performance_metrics(results, total_time): | ||
latencies = [res[0] for res in results] | ||
total_tokens = sum([res[1] for res in results]) | ||
|
||
total = len(results) | ||
print(f"Total Requests: {total}") | ||
print(f"Successful Requests: {len(latencies)}") | ||
print(f"Average Latency: {mean(latencies):.4f} seconds") | ||
print(f"Median Latency: {median(latencies):.4f} seconds") | ||
perc = sorted(latencies)[int(len(latencies) * 0.95) - 1] | ||
print(f"95th Percentile Latency: {perc:.4f} seconds") | ||
# Throughput | ||
req_throughput = len(latencies) / total_time | ||
print(f"Estimated req_Throughput: {req_throughput:.2f} requests/s") | ||
throughput = total_tokens / total_time | ||
print(f"Estimated Throughput: {throughput:.2f} tok/s") | ||
|
||
|
||
def add_duration(sample): | ||
y, sr = sample['audio']["array"], sample['audio']["sampling_rate"] | ||
sample['duration_ms'] = librosa.get_duration(y=y, sr=sr) * 1000 | ||
return sample | ||
|
||
|
||
def to_float32(sample): | ||
sample["audio"]["array"] = sample["audio"]["array"].astype(np.float32) | ||
return sample | ||
|
||
|
||
def load_hf_dataset(dataset_repo: str, | ||
dataset_name: str, | ||
split="validation", | ||
**hf_kwargs): | ||
## Load and filter the dataset | ||
dataset = load_dataset(dataset_repo, | ||
dataset_name, | ||
split=split, | ||
**hf_kwargs) | ||
if 'duration_ms' not in dataset[0]: | ||
# compute duration to filter | ||
dataset = dataset.map(add_duration) | ||
|
||
# Whisper max supported duration | ||
dataset = dataset.filter(lambda example: example['duration_ms'] < 30000) | ||
|
||
return dataset | ||
|
||
|
||
def run_evaluation(model: str, | ||
dataset, | ||
n_examples: int = -1, | ||
max_concurrent_reqs: Optional[int] = None, | ||
print_metrics: bool = True): | ||
if n_examples > 0: | ||
dataset = dataset.select(range(n_examples)) | ||
|
||
# Warmup | ||
_ = asyncio.run( | ||
process_dataset(model, dataset.select(range(1)), max_concurrent_reqs)) | ||
|
||
start = time.perf_counter() | ||
results = asyncio.run(process_dataset(model, dataset, max_concurrent_reqs)) | ||
end = time.perf_counter() | ||
total_time = end - start | ||
print(f"Total Test Time: {total_time:.4f} seconds") | ||
if print_metrics: | ||
print_performance_metrics(results, total_time) | ||
# Compute WER | ||
predictions = [res[2] for res in results] | ||
references = [res[3] for res in results] | ||
wer = load("wer") | ||
wer_score = 100 * wer.compute(references=references, | ||
predictions=predictions) | ||
print("WER:", wer_score) | ||
return wer_score | ||
|
||
|
||
if __name__ == "__main__": | ||
args = ArgumentParser() | ||
# alternatives "openai/whisper-large-v2", "openai/whisper-large-v3-turbo". | ||
args.add_argument("-m", | ||
"--model-name", | ||
type=str, | ||
help="Name of the ASR model to evaluate.", | ||
default="openai/whisper-large-v3") | ||
args.add_argument("-dr", | ||
"--dataset-repo", | ||
type=str, | ||
help="Path/repo of the hf asr dataset to test on.") | ||
args.add_argument("-dn", | ||
"--dataset-name", | ||
type=str, | ||
help="Name of the hf asr dataset to test on.") | ||
args.add_argument("--n-examples", | ||
type=int, | ||
help="Limit the number of examples to evaluate on.", | ||
default=-1) | ||
args.add_argument( | ||
"--max-concurrent-request", | ||
type=int, | ||
help="Limit the number of requests sent to the server at the same time" | ||
) | ||
args.add_argument("--expected-wer", | ||
type=float, | ||
help="Expected WER to compare against.") | ||
args.add_argument( | ||
"--extra", | ||
nargs="*", | ||
help="Extra keyword arguments (key=value pairs) to be passed " | ||
"to hf `load_dataset`") | ||
args = args.parse_args() | ||
|
||
extra_kwargs = {} | ||
if args.extra: | ||
for item in args.extra: | ||
key, value = item.split("=", 1) | ||
extra_kwargs[key] = value | ||
|
||
print("Running evaluation with args", vars(args)) | ||
dataset = load_hf_dataset(args.dataset_repo, args.dataset_name, | ||
**extra_kwargs) | ||
|
||
if not args.max_concurrent_request: | ||
# No max concurrency | ||
args.max_concurrent_request = args.n_examples if args.n_examples > 0\ | ||
else len(dataset) | ||
|
||
wer = run_evaluation(args.model_name, dataset, args.n_examples, | ||
args.max_concurrent_request) | ||
if args.expected_wer: | ||
torch.testing.assert_close(wer, | ||
args.expected_wer, | ||
atol=1e-1, | ||
rtol=1e-2) |
Empty file.
Oops, something went wrong.