Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

C++ Demo - Human Segmentation #243

Merged
merged 4 commits into from
Mar 12, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions models/human_segmentation_pphumanseg/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
cmake_minimum_required(VERSION 3.24)
set(CMAKE_CXX_STANDARD 11)
set(project_name "opencv_zoo_human_segmentation")

PROJECT (${project_name})

set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
# Find OpenCV, you may need to set OpenCV_DIR variable
# to the absolute path to the directory containing OpenCVConfig.cmake file
# via the command line or GUI

file(GLOB SourceFile
"demo.cpp")
# If the package has been found, several variables will
# be set, you can find the full list with descriptions
# in the OpenCVConfig.cmake file.
# Print some message showing some of them
message(STATUS "OpenCV library status:")
message(STATUS " config: ${OpenCV_DIR}")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")

# Declare the executable target built from your sources
add_executable(${project_name} ${SourceFile})

# Link your application with OpenCV libraries
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})

19 changes: 19 additions & 0 deletions models/human_segmentation_pphumanseg/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@ This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub)

## Demo

### Python

Run the following command to try the demo:

```shell
Expand All @@ -16,6 +18,23 @@ python demo.py --input /path/to/image -v
python demo.py --help
```

### C++

Install latest OpenCV and CMake >= 3.24.0 to get started with:

```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build

# detect on camera input
./build/opencv_zoo_human_segmentation
# detect on an image
./build/opencv_zoo_human_segmentation -i=/path/to/image
# get help messages
./build/opencv_zoo_human_segmentation -h
```

### Example outputs

![webcam demo](./example_outputs/pphumanseg_demo.gif)
Expand Down
224 changes: 224 additions & 0 deletions models/human_segmentation_pphumanseg/demo.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
#include "opencv2/opencv.hpp"

#include <map>
#include <vector>
#include <string>
#include <iostream>

using namespace std;
using namespace cv;
using namespace dnn;

std::vector<std::pair<int, int>> backend_target_pairs = {
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
};

class PPHS
{
private:
Net model;
string modelPath;

Scalar imageMean = Scalar(0.5,0.5,0.5);
Scalar imageStd = Scalar(0.5,0.5,0.5);
Size modelInputSize = Size(192, 192);
Size currentSize;

const String inputNames = "x";
const String outputNames = "save_infer_model/scale_0.tmp_1";

int backend_id;
int target_id;

public:
PPHS(const string& modelPath,
int backend_id = 0,
int target_id = 0)
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
{
this->model = readNet(modelPath);
this->model.setPreferableBackend(backend_id);
this->model.setPreferableTarget(target_id);
}

Mat preprocess(const Mat image)
{
this->currentSize = image.size();
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type());
resize(image, preprocessed, this->modelInputSize);

// image normalization
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0);
preprocessed -= imageMean;
preprocessed /= imageStd;

return blobFromImage(preprocessed);;
}

Mat infer(const Mat image)
{
Mat inputBlob = preprocess(image);

this->model.setInput(inputBlob, this->inputNames);
Mat outputBlob = this->model.forward(this->outputNames);

return postprocess(outputBlob);
}

Mat postprocess(Mat image)
{
image = image.reshape(image.size[0], image.size[1]).row(0).reshape(1,image.size[2]);
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR);
image.convertTo(image, CV_8U);

return image;
}

};


vector<uint8_t> getColorMapList(int num_classes) {
num_classes += 1;

vector<uint8_t> cm(num_classes*3, 0);

int lab, j;

for (int i = 0; i < num_classes; ++i) {
lab = i;
j = 0;

while(lab){
cm[i] |= (((lab >> 0) & 1) << (7 - j));
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j));
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}

}

cm.erase(cm.begin(), cm.begin()+3);

return cm;
};

Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.5)
{
const Scalar& text_color = Scalar(0, 255, 0);
Mat output_image = image.clone();

vector<uint8_t> color_map = getColorMapList(256);

Mat cmm(color_map);

cmm = cmm.reshape(1,{3,256});

if (fps >= 0)
{
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
}

Mat c1, c2, c3;

LUT(result, cmm.row(0), c1);
LUT(result, cmm.row(1), c2);
LUT(result, cmm.row(2), c3);

Mat pseudo_img;
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img);

addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image);

return output_image;
};

string keys =
"{ help h | | Print help message. }"
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{ save s | false | Specify to save results.}"
"{ vis v | true | Specify to open a window for result visualization.}"
;


int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);

parser.about("Human Segmentation");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}

string modelPath = parser.get<string>("model");
string inputPath = parser.get<string>("input");
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
bool saveFlag = parser.get<bool>("save");
bool visFlag = parser.get<bool>("vis");

if (modelPath.empty())
CV_Error(Error::StsError, "Model file " + modelPath + " not found");

PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);

VideoCapture cap;
if (!inputPath.empty())
cap.open(samples::findFile(inputPath));
else
cap.open(0);

if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot opend video or file");

Mat frame;
Mat result;
static const std::string kWinName = "Human Segmentation Demo";
TickMeter tm;

while (waitKey(1) < 0)
{
cap >> frame;

if (frame.empty())
{
if(inputPath.empty())
cout << "Frame is empty" << endl;
break;
}

tm.start();
result = humanSegmentationModel.infer(frame);
tm.stop();

Mat res_frame = visualize(frame, result, tm.getFPS());

if(visFlag || inputPath.empty())
{
imshow(kWinName, res_frame);
if(!inputPath.empty())
waitKey(0);
}
if(saveFlag)
{
cout << "Results are saved to result.jpg" << endl;

imwrite("result.jpg", res_frame);
}
}

return 0;
}

5 changes: 3 additions & 2 deletions models/human_segmentation_pphumanseg/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,8 @@ def visualize(image, result, weight=0.6, fps=None):
vis_result (np.ndarray): The visualized result.
"""
color_map = get_color_map_list(256)
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
color_map = np.array(color_map).astype(np.uint8)
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)

# Use OpenCV LUT for color mapping
c1 = cv.LUT(result, color_map[:, 0])
c2 = cv.LUT(result, color_map[:, 1])
Expand Down Expand Up @@ -158,3 +158,4 @@ def visualize(image, result, weight=0.6, fps=None):
cv.imshow('PPHumanSeg Demo', frame)

tm.reset()