-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add content for vectors-matrix-ops/independence
Add actual content to the skeleton of the `vectors-matrix-ops/independence` section. Signed-off-by: Eggert Karl Hafsteinsson <[email protected]> Signed-off-by: Teodor Dutu <[email protected]> Signed-off-by: Razvan Deaconescu <[email protected]>
- Loading branch information
Showing
2 changed files
with
193 additions
and
1 deletion.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
193 changes: 193 additions & 0 deletions
193
chapters/vectors-matrix-ops/independence/reading/read.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# Independence, Expectations and the Moment Generating Function | ||
|
||
## Independent Random Variables | ||
|
||
Recall that two events, $A$ and $B$, are independent if, | ||
|
||
$$P [A \cap B] = P[A] P[B]$$ | ||
|
||
Since the conditional probability of $A$ given $B$ is defined by: | ||
|
||
$$P [A|B] = \displaystyle\frac {P [A \cap B]} {P[B]}$$ | ||
|
||
We see that $A$ and $B$ are independent if and only if | ||
|
||
$$P[A|B] = P[A] \quad (\text{when } P [B] > 0 )$$ | ||
|
||
Two continuous random variables, $X$ and $Y$, are similarly independent if, | ||
|
||
$$P [X \in A, Y \in B] = P [X \in A] P[Y \in B]$$ | ||
|
||
### Details | ||
|
||
Two continuous random variables, $X$ and $Y$, are similarly independent if, | ||
|
||
$$P [X \in A, Y \in B] = P [X \in A] P[Y \in B]$$ | ||
|
||
Now suppose $X$ has `p.d.f.` $f_X$, and $Y$ has `p.d.f.` $f_Y$. | ||
Then, | ||
|
||
$$P [X \in A] = \displaystyle\int_{A} f_X (x) dx,$$ | ||
|
||
$$P [Y \in B] = \displaystyle\int_{B} f_Y (y) dy$$ | ||
|
||
So $X$ and $Y$ are independent if: | ||
|
||
$$ | ||
\begin{aligned} | ||
P [X \in, Y \in B] &= \displaystyle\int_{A} f_X (x) dx \displaystyle\int_{B} f_Y (y) dy \\ | ||
&= \displaystyle\int_{A}f_X (x) (\displaystyle\int_{B} f_Y (y) dy) dx \\ | ||
&= \displaystyle\int_{A}\displaystyle\int_{B} f_X (x)f_Y (y) dydx | ||
\end{aligned} | ||
$$ | ||
|
||
But, if $f$ is the joint density of $X$ and $Y$ then we know that | ||
|
||
$$P [X \in A, Y \in B]$$ | ||
|
||
$$\displaystyle\int_{A}\displaystyle\int_{B} f (x,y) dydx$$ | ||
|
||
Hence $X$ and $Y$ are independent if and only if we can write the joint density in the form of, | ||
|
||
$$f(x,y) = f_X (x)f_Y (y)$$ | ||
|
||
## Independence and Expected Values | ||
|
||
If $X$ and $Y$ are independent random variables then $E[XY]=E[X]E[Y]$. | ||
|
||
Further, if $X$ and $Y$ are independent random variables then $E[g(X)h(Y)]=E[g(X)]E[h(Y)]$ is true if $g$ and $h$ are functions in which expectations exist. | ||
|
||
### Details | ||
|
||
If $X$ and $Y$ are random variables with a joint distribution function $f(x,y)$, then it is true that for $h:\mathbb{R}^2\to\mathbb{R}$ we have | ||
|
||
$$E[h(X,Y)]=\displaystyle\int\displaystyle\int h(x,y)f(x,y)dxdy$$ | ||
|
||
for those $h$ such that the integral on the right exists | ||
|
||
Suppose $X$ and $Y$ are independent continuous random variables, then | ||
|
||
$$f(x,y) = f_X (x) f_Y (y)$$ | ||
|
||
Thus, | ||
|
||
$$ | ||
\begin{aligned} | ||
E[XY] &= \displaystyle\int\displaystyle\int xy f (x,y) dxdy \\ | ||
&= \displaystyle\int\displaystyle\int xy f_X (x) f_Y (y) dxdy \\ | ||
&= \displaystyle\int xf_X (x) dx \displaystyle\int yf_Y (y) dy \\ | ||
&= E[X] E[Y] | ||
\end{aligned} | ||
$$ | ||
|
||
:::note Note | ||
|
||
Note that if $X$ and $Y$ are independent then $E[h(X) g(Y)] = E [h(X)] E[g(Y)]$ is true whenever the functions $h$ and $g$ have expected values. | ||
|
||
::: | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
Suppose $X,Y \in U (0,2)$ are independent identically distributed then, | ||
|
||
$$ | ||
f_X(x) = | ||
\begin{cases} | ||
\displaystyle\frac{1}{2} & \text{if } 0 \leq x \leq 2 \\ | ||
0 & \text{otherwise} | ||
\end{cases} | ||
$$ | ||
|
||
and similarly for $f_Y$. | ||
|
||
Next, note that, | ||
|
||
$$ | ||
f(x,y) = | ||
f_X(x) f_Y(y) = | ||
\begin{cases} | ||
\displaystyle\frac{1}{4} & \text{if } 0 \leq x,y \leq 2 \\ | ||
0 & \text{otherwise} | ||
\end{cases} | ||
$$ | ||
|
||
Also note that $f(x,y) \geq 0$ for all $(x,y) \in \mathbb{R}^2$ and | ||
|
||
$$\displaystyle\int\displaystyle\int f(x,y)dxdy = \displaystyle\int_{0}^{2}\displaystyle\int_{0}^{2} \displaystyle\frac {1}{4} dxdy = \displaystyle\frac {1}{4}.4 = 1$$ | ||
|
||
It follows that | ||
|
||
|
||
$$ | ||
\begin{aligned} | ||
E[XY] &= \int\int f(x,y) xy dxdy \\ | ||
&= \int_{0}^{2}\int_{0}^2 \frac{1}{4} xy dxdy \\ | ||
&= \frac{1}{4} \int_{0}^{2} y (\int_{0}^{2} x dx) dy \\ | ||
&= \frac{1}{4} \int_{0}^{2} y \frac{x^{2}}{2} \vert_{0}^{2} dy \\ | ||
&= \frac{1}{4} \int_{0}^{2} y (\frac{2^{2}}{2} - \frac{0^{2}}{2}) dy \\ | ||
&= \frac{1}{4} \int_{0}^{2} 2 y dy \\ | ||
&= \frac{1}{2} \int_{0}^{2} y dy \\ | ||
&= \frac{1}{2} \frac{y^{2}}{2} \vert_{0}^{2} \\ | ||
&= \frac{1}{2} (\frac{2^{2}}{2} - \frac{0^{2}}{2}) \\ | ||
&= \frac{1}{2} 2 \\ | ||
&= 1 | ||
\end{aligned} | ||
$$ | ||
|
||
but | ||
|
||
$$E[X] = E[Y] = \displaystyle\int_{0}^{2} x \displaystyle\frac{1}{2} dx = 1$$ | ||
|
||
so | ||
|
||
$$E[XY] = E[X] E[Y]$$ | ||
|
||
::: | ||
|
||
## Independence and the Covariance | ||
|
||
If $X$ and $Y$ are independent then $Cov(X,Y)=0$ | ||
|
||
In fact, if $X$ and $Y$ are independent then $Cov(h(X),g(Y))=0$ for any functions $g$ and $h$ in which expected values exist. | ||
|
||
## The Moment Generating Function | ||
|
||
If $X$ is a random variable we define the moment generating function when $t$ exists as: $M(t):=E[e^{tX}]$. | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
If $X\sim Bin(n,p)$ then $M(t)=\displaystyle\sum_{x=0}^{n} e^{tx}p(x) = \displaystyle\sum_{x=0}^{n} e^{tx} \displaystyle\binom{n}{x}p\cdot (1-p)^{n-x}$ | ||
|
||
::: | ||
|
||
## Moments and the Moment Generating Function | ||
|
||
If $M_{X}(t)$ is the moment generating function (mgf) of $X$, then $M_{X}^{(n)}(0)=E[X^n]$. | ||
|
||
### Details | ||
|
||
Observe that $M(t)=E[e^{tX}]=E[1+X+\displaystyle\frac{(tX)^2}{2!}+\displaystyle\frac{(tX)^3}{3!}+\dots]$ since $e^a=1+a+\displaystyle\frac{a^2}{2!}+\displaystyle\frac{a^3}{3!}+\dots$. | ||
If the random variable $e^{|tX|}$ has a finite expected value then we can switch the sum and the expected valued to obtain: | ||
|
||
$$M(t)=E\left[\displaystyle\sum_{n=0}^{\infty}\displaystyle\frac{(tX)^n}{n!}\right]=\displaystyle\sum_{n=0}^{\infty}\displaystyle\frac{E[(tX)^n]}{n!}=\displaystyle\sum_{n=0}^{\infty}t^n\displaystyle\frac{E[X^n]}{n!}$$ | ||
|
||
This implies that the $n^{th}$ derivative of $M(t)$ evaluated at $t=0$ is exactly $E[X^n]$. | ||
|
||
## The Moment Generating Function of a Sum of Random Variables | ||
|
||
$M_{X+Y}(t)=M_{X}(t)\cdot M_{Y}(t)$ if $X$ and $Y$ are independent. | ||
|
||
### Details | ||
|
||
Let $X$ and $Y$ be independent random vaiables, then | ||
|
||
$$M_{X+Y}(t)=E[e^{Xt+Yt}]=E[e^{Xt}e^{Xt}]=E[e^{Xt}]E[e^{Xt}]=M_{X}(t)M_{Y}(t)$$ | ||
|
||
## Uniqueness of the Moment Generating Function | ||
|
||
Moment generating functions (`m.g.f.`) uniquely determine the probability distribution function for random variables. | ||
Thus, if two random variables have the same moment-generating function, then they must also have the same distribution. |