-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add content for vectors-matrix-ops/multivariate-calculus
Add actual content to the skeleton of the `vectors-matrix-ops/multivariate-calculus` section. Signed-off-by: Eggert Karl Hafsteinsson <[email protected]> Signed-off-by: Teodor Dutu <[email protected]> Signed-off-by: Razvan Deaconescu <[email protected]>
- Loading branch information
Showing
1 changed file
with
237 additions
and
0 deletions.
There are no files selected for viewing
237 changes: 237 additions & 0 deletions
237
chapters/vectors-matrix-ops/multivariate-calculus/reading/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,238 @@ | ||
# Multivariate Calculus | ||
|
||
## Vector Functions of Several Variables | ||
|
||
A vector-valued function of several variables is a function | ||
|
||
$$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$$ | ||
|
||
i.e. a function of $m$ -dimensional vectors, which returns $n$ dimensional vectors. | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
A real valued function of many variables: $f: \mathbb{R}^3\to\mathbb{R}$, $f(x_1,x_2,x_3)=2x_1+3x_2+4x_3$. | ||
|
||
::: | ||
|
||
:::note Note | ||
|
||
$f$ is linear and $f(x)=Ax$ where | ||
|
||
$$x=\begin{pmatrix} \\ x_1 \\ x_2 \\ x_3\end{pmatrix}$$ | ||
|
||
and | ||
|
||
$$A=\begin{bmatrix}2&3&4\end{bmatrix}$$ | ||
|
||
::: | ||
|
||
:::info Example | ||
|
||
Let | ||
|
||
$$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$ | ||
|
||
where | ||
|
||
$$f(x_1,x_2) = \left( \begin{array}{c} x_1+x_2 \\ x_1-x_2 \end{array} \right)$$ | ||
|
||
::: | ||
|
||
:::note Note | ||
|
||
Note that $f(x)=Ax$, where | ||
|
||
$$A=\begin{bmatrix} \\ 1&1 \\ 1&-1 \\ \end{bmatrix}$$ | ||
|
||
::: | ||
|
||
:::info Example | ||
|
||
Let | ||
|
||
$$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$$ | ||
|
||
be defined by | ||
|
||
$$f(x) = \left( \begin{array}{c} x_1+x_2 \\ x_1-x_3 \\ y-z \\ x_1+x_2+x_3 \end{array} \right)$$ | ||
|
||
::: | ||
|
||
:::Note note | ||
|
||
$$f(x) = Ax$$ where $$A = \begin{bmatrix} 1 & 1 & 0\\ 1 & 0 & -1\\ 0 & 1 & -1\\ 1 & 1 & 1 \end{bmatrix}$$ | ||
|
||
::: | ||
|
||
:::info Example | ||
|
||
These multi-dimensional functions do not have to be linear, for example the function $f:\mathbb{R}^2\to\mathbb{R}^2$ | ||
|
||
$$f(x) = \left( \begin{array}{c} x_1x_2 \\ x_1^{2}+x_2^{2} \end{array} \right),$$ | ||
|
||
is obviously not linear. | ||
|
||
::: | ||
|
||
## The Gradient | ||
|
||
Suppose the real valued function $f:\mathbb{R}^m \rightarrow \mathbb{R}$ is differentiable in each coordinate. | ||
Then the gradient of $f$, denoted $\nabla f$ is given by | ||
|
||
$$\nabla f(x)=\begin{pmatrix}\frac{\partial f}{\partial x_1},&\dots &,\frac{\partial f}{\partial x_1}\end{pmatrix}$$ | ||
|
||
### Details | ||
|
||
:::note Definition | ||
|
||
Suppose the real valued function $f:\mathbb{R}^m \rightarrow \mathbb{R}$ is differentiable in each coordinate. | ||
Then the **gradient** of $f$, denoted $\nabla f$ is given by | ||
|
||
$$\nabla f(x)= \begin{pmatrix} \frac{\partial f}{\partial x_1},&\dots &,\frac{\partial f}{\partial x_1}\end{pmatrix}$$ | ||
|
||
where each partial derivative $\frac{\partial f}{\partial x_i}$ is computed by differentiating $f$ with respect to that variable, regarding the others as fixed. | ||
|
||
::: | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
Let | ||
|
||
$$f(\underline{x})= x^2+y^2+2xy.$$ | ||
|
||
Then the partial derivatives of $f$ are | ||
|
||
$$\frac{\partial f}{\partial x}=2x+2y$$ | ||
|
||
and | ||
|
||
$$\frac{\partial f}{\partial y}=2y+2x$$ | ||
|
||
and the gradient of $f$ is therefore | ||
|
||
$$\nabla f =\begin{pmatrix}2x+2y, & 2y+2x\end{pmatrix}$$ | ||
|
||
::: | ||
|
||
:::info Example | ||
|
||
Let | ||
|
||
$$f(\underline{x})=x_1-x_2$$ | ||
|
||
The gradient of $f$ is | ||
|
||
$$\nabla f= \begin{pmatrix}1, & -1\end{pmatrix}$$ | ||
|
||
::: | ||
|
||
## The Jacobian | ||
|
||
Now consider a function $f:\mathbb{R}^m\to\mathbb{R}^n$. | ||
Write $f_i$ for the $i^{th}$ coordinate of $f$, so we can write $f(x)=(f_1(x),f_2(x),\ldots,f_n(x))$, where $x\in\mathbb{R}^m$. | ||
If each coordinate function $f_i$ is differentiable in each variable we can form the *Jacobian matrix* of $f$: | ||
|
||
$$\begin{pmatrix}\nabla f_1\\ \vdots\\ \nabla f_n \end{pmatrix}$$ | ||
|
||
### Details | ||
|
||
Now consider a function $f:\mathbb{R}^m\to\mathbb{R}^n$. | ||
Write $f_i$ for the $i^{th}$ coordinate of $f$, so we can write $f(x)=(f_1(x),f_2(x),\ldots,f_n(x))$, where $x\in\mathbb{R}^m$. | ||
If each coordinate function $f_i$ is differentiable in each variable we can form the *Jacobian matrix* of $f$: | ||
|
||
$$\begin{pmatrix}\nabla f_1\\ \vdots\\ \nabla f_n \end{pmatrix}$$ | ||
|
||
In this matrix, the element in the $i^{th}$ row and $j^{th}$ column is $\frac{\partial f_i}{\partial x_j}$. | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
For the function | ||
|
||
$$f(x,y)=\begin{pmatrix} x^2 +y \\ x y \\ x \end{pmatrix}= \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \\ f_3(x,y) \end{pmatrix}$$ | ||
|
||
the Jacobian matrix of $f$ is the matrix | ||
|
||
$$J= \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ \nabla f_3 \end{bmatrix}= \begin{bmatrix} 2x & 2y \\ y & x \\ 1 & 0 \end{bmatrix}$$ | ||
|
||
::: | ||
|
||
## Univariate Integration By Substitution | ||
|
||
If $f$ is a continuous function and $g$ is strictly increasing and differentiable then, | ||
|
||
$$\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(t))g^\prime (t)dt.$$ | ||
|
||
### Details | ||
|
||
If $f$ is a continuous function and $g$ is strictly increasing and differentiable then, | ||
|
||
$$\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(t))g^\prime (t)dt$$ | ||
|
||
It follows that if $X$ is a continuous random variable with density $f$ | ||
|
||
and $Y = h(X)$ is a function of $X$ that has the inverse $g=h^{-1}$, so $X = g(Y)$, then the density of $Y$ is given by, | ||
|
||
$$f_Y(y) = f (g(y)) g^\prime (y)$$ | ||
|
||
This is a consequence of | ||
|
||
$$P [Y \leq b] = P [g(Y) \leq g(b)] = P [X \leq g(b)] = \int_{- \infty} ^{g(b)}f(x)dx = \int_{- \infty} ^b f (g(y))g^\prime (y)dy$$ | ||
|
||
## Multivariate Integration By Substitution | ||
|
||
Suppose $f$ is a continuous function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a one-to-one function with continuous partial derivatives. | ||
Then if $U \subseteq \mathbb{R}^n$ is a subset, | ||
|
||
$$\int_{g(U)} f(\mathbf {x})d\mathbf {x} = \int_{U}({g}(\mathbf {y}))|J|d\mathbf {y}$$ | ||
|
||
where $J$ is the Jacobian matrix and $|J|$ is the absolute value of it's determinant. | ||
|
||
$$J= \left|\begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \cdots &\frac{\partial g_1}{\partial y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_n}{\partial y_1} & \frac{\partial g_n}{\partial y_2} & \cdots & \frac{\partial g_n}{\partial y_n} \end{bmatrix}\right| = \left|\begin{bmatrix} \nabla g_1 \\ \vdots \\ \nabla g_n \end{bmatrix}\right|$$ | ||
|
||
### Details | ||
|
||
Suppose $f$ is a continuous function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a one-to-one function with continuous partial derivatives. | ||
Then if $U \subseteq \mathbb{R}^n$ is a subset, | ||
|
||
$$\int_{g(U)} f(\mathbf {x})d\mathbf {x} = \int_{U}({g}(\mathbf {y}))|J|d\mathbf {y}$$ | ||
|
||
where $J$ is the Jacobian determinant and \|J\| is its absolute value. | ||
|
||
$$J= \left|\begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \cdots &\frac{\partial g_1}{\partial y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_n}{\partial y_1} & \frac{\partial g_n}{\partial y_2} & \cdots & \frac{\partial g_n}{\partial y_n} \end{bmatrix}\right| = \left|\begin{bmatrix} \nabla g_1 \\ \vdots \\ \nabla g_n \end{bmatrix}\right|$$ | ||
|
||
Similar calculations as in 28.4 give us that if $X$ is a continuous multivariate random variable, $X = (X_1, \ldots, X_n)^\prime$ with density $f$ and $\mathbf{Y} = \mathbf{h} (\mathbf{X})$, where $\mathbf{h}$ is one-to-one with inverse $\mathbf g= \mathbf{h}^{-1}$. | ||
So, $\mathbf{X} = g(\mathbf{Y})$, then the density of $\mathbf{Y}$ is given by; | ||
|
||
$$f_Y(\mathbf y) = f (g(\mathbf y)) |J|$$ | ||
|
||
### Examples | ||
|
||
:::info Example | ||
|
||
If $\mathbf{Y} = A \mathbf X$ where $A$ is an $n \times n$ matrix with $\det(A)\neq0$ and $X = (X_1, \ldots, X_n)^\prime$ are independent and identically distributed random variables, then we have the following results. | ||
|
||
The joint density of $X_1 \cdots X_n$ is the product of the individual (marginal) densities, | ||
|
||
$$f_X(\mathbf x)= f(x_1) f(x_2) \cdots f(x_n)$$ | ||
|
||
The matrix of partial derivatives corresponds to $\frac{\partial g}{\partial y}$ where $\mathbf X = \mathbf g(\mathbf{Y})$, i.e. these are the derivatives of the transformation: $\mathbf X = g (\mathbf{Y}) = A^{-1}\mathbf{Y}$, or $\mathbf X = B \mathbf{Y}$ where $B = A^{-1}$ | ||
|
||
But if $\mathbf X = B \mathbf{Y}$, then | ||
|
||
$$X_i = b_{i1}y_1 + b_{i2}y_2 + \cdots b_{ij}y_j\cdots b_{in}y_n$$ | ||
|
||
So, $\frac{\partial x_i}{\partial y_j} = b_{ij}$ and thus, | ||
|
||
$$J =\left|\frac{\partial d\mathbf x}{\partial d\mathbf y}\right| = |B| = |A^{-1}| = \frac {1}{|A|}$$ | ||
|
||
The density of $\mathbf{Y}$ is therefore; | ||
|
||
$$f_Y(\mathbf{y}) = f_X(g(\mathbf{y})) |J| = f_X(A^{-1}\mathbf{y}) |A^{-1}|$$ | ||
|
||
::: |